• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Wang Siwan, Jiang Hui, Wang Jia, Wu Haisi, Wu Ting, Ni Mengnan, Zhao Qianqian, Ji You, Zhang Ziting, Tang Chunming, Xu Huae. Superior in vitro anticancer effect of biomimetic paclitaxel and triptolide co-delivery system in gastric cancer[J]. The Journal of Biomedical Research, 2021, 35(4): 327-338. doi: 10.7555/JBR.35.20210102
Citation: Wang Siwan, Jiang Hui, Wang Jia, Wu Haisi, Wu Ting, Ni Mengnan, Zhao Qianqian, Ji You, Zhang Ziting, Tang Chunming, Xu Huae. Superior in vitro anticancer effect of biomimetic paclitaxel and triptolide co-delivery system in gastric cancer[J]. The Journal of Biomedical Research, 2021, 35(4): 327-338. doi: 10.7555/JBR.35.20210102

Superior in vitro anticancer effect of biomimetic paclitaxel and triptolide co-delivery system in gastric cancer

doi: 10.7555/JBR.35.20210102
More Information
  • Corresponding author: Huae Xu and Chunming Tang, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. E-mails: xuhuae@njmu.edu.cn and cmtang@njmu.edu.cn; 
  • Received: 2021-06-28
  • Revised: 2021-07-07
  • Accepted: 2021-07-12
  • Published: 2021-07-28
  • Issue Date: 2021-07-28
  • As a well-known anticancer drug, paclitaxel (PTX), a first-line chemotherapeutic agent, remains unsatisfactory for gastric cancer therapy. It is reported that triptolide (TPL) could enhance the anti-gastric cancer effect of PTX. Considering the poor solubility of both drugs, we developed a red blood cell membrane-biomimetic nanosystem, an emerging tool in drug delivery, to co-load paclitaxel and triptolide (red blood cell membrane coated PTX and TPL co-loaded poly(lactic-co-glycolic acid) [PLGA] nanoparticles, RP(P/T)). The successful preparation was confirmed in terms of particle size, morphology, and surface markers assays. This biomimetic system could prolong circulation and escape immune surveillance. And these properties were verified by stability, in vitro drug release, and cellular uptake assays. Moreover, the MTT and colony formation assays demonstrated the superior anti-proliferation effect of the RP(P/T) to free drugs. The enhanced antitumor effects of RP(P/T) on migration and invasion were also evaluated by wound-healing and transwell assays. Overall, the bionic co-delivery nanoplatform with improved efficacy in vitro is a promising therapy for gastric cancer.


  • loading
  • [1]
    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394–424. doi: 10.3322/caac.21492
    Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014[J]. Chin J Cancer Res, 2018, 30(1): 1–12. doi: 10.21147/j.issn.1000-9604.2018.01.01
    China-fact-sheets. The global cancer observatory[EB/OL]. [2020-11-25]. https://gco.iarc.fr/today/data/factsheets/populations/160-china-fact-sheets.pdf.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136: E359–386. doi: 10.1002/ijc.29210
    NCCN guidelines for patients®: stomach cancer[EB/OL]. [2019-06-22]. https://www.nccn.org/patients/guidelines/content/PDF/stomach-patient.pdf.
    Efferth T, Li PCH, Konkimalla VS, et al. From traditional Chinese medicine to rational cancer therapy[J]. Trends Mol Med, 2007, 13(8): 353–361. doi: 10.1016/j.molmed.2007.07.001
    Wang W, Lin W, Wang Q, et al. The enhanced antitumor effect of combined triptolide and paclitaxel on pancreatic cancer cell lines[J]. J Clin Oncol, 2014, 32(S3): 335.
    Li X, Lu X, Xu H, et al. Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on "oxidation therapy"[J]. Mol Pharmaceut, 2012, 9(2): 222–229. doi: 10.1021/mp2002736
    Li X, Yu N, Li J, et al. Novel "carrier-free" nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10096–10106. doi: 10.1021/acsami.9b17363
    Chen S, Dai Y, Zhao J, et al. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F[J]. Front Pharmacol, 2018, 9: 104. doi: 10.3389/fphar.2018.00104
    Roy V, LaPlant BR, Gross GG, et al. Phase II trial of weekly nab (nanoparticle albumin-bound)-paclitaxel (nab-paclitaxel) (Abraxane®) in combination with gemcitabine in patients with metastatic breast cancer (N0531)[J]. Ann Oncol, 2009, 20(3): 449–453. doi: 10.1093/annonc/mdn661
    Couvreur P. Nanoparticles in drug delivery: past, present and future[J]. Adv Drug Deliv Rev, 2013, 65(1): 21–23. doi: 10.1016/j.addr.2012.04.010
    Wang L, Jia E. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance[J]. Drug Deliv, 2016, 23(5): 1810–1817. doi: 10.3109/10717544.2015.1101792
    Ahmed F, Pakunlu RI, Brannan A, et al. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug[J]. J Control Release, 2006, 116(2): 150–158. doi: 10.1016/j.jconrel.2006.07.012
    Xu H, Lu X, Li J, et al. Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers[J]. Int J Pharmaceut, 2017, 526(1-2): 217–224. doi: 10.1016/j.ijpharm.2017.04.081
    Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009, 3(1): 16–20. doi: 10.1021/nn900002m
    Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects[J]. J Nanobiotechnol, 2018, 16(1): 71. doi: 10.1186/s12951-018-0392-8
    Hu C, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci USA, 2011, 108(27): 10980–10985. doi: 10.1073/pnas.1106634108
    Kroll AV, Fang R, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles[J]. Bioconjugate Chem, 2017, 28(1): 23–32. doi: 10.1021/acs.bioconjchem.6b00569
    Fang R, Kroll AV, Gao W, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30(23): 1706759. doi: 10.1002/adma.201706759
    Tang C, Wang C, Zhang Y, et al. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke[J]. Nano Lett, 2019, 19(7): 4470–4477. doi: 10.1021/acs.nanolett.9b01282
    Hu Q, Sun W, Wang C, et al. Recent advances of cocktail chemotherapy by combination drug delivery systems[J]. Adv Drug Deliv Rev, 2016, 98: 19–34. doi: 10.1016/j.addr.2015.10.022
    Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells[J]. Science, 2000, 288(5473): 2051–2054. doi: 10.1126/science.288.5473.2051
    Li W, Ng JMK, Wong C, et al. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer[J]. Oncogene, 2018, 37(36): 4903–4920. doi: 10.1038/s41388-018-0341-x
    Long Y, Lu Z, Mei L, et al. Enhanced melanoma-targeted therapy by "Fru-Blocked" phenyboronic acid-modified multiphase antimetastatic micellar nanoparticles[J]. Adv Sci, 2018, 5(11): 1800229. doi: 10.1002/advs.201800229
    Zhao H, Yang Z, Wang X, et al. Triptolide inhibits ovarian cancer cell invasion by repression of matrix metalloproteinase 7 and 19 and upregulation of E-cadherin[J]. Exp Mol Med, 2012, 44(11): 633–641. doi: 10.3858/emm.2012.44.11.072
    Sun B, Taha MS, Ramsey B, et al. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals[J]. J Control Release, 2016, 235: 91–98. doi: 10.1016/j.jconrel.2016.05.056
    Liu Y, Ng Y, Toh MR, et al. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer[J]. J Control Release, 2015, 220: 438–446. doi: 10.1016/j.jconrel.2015.11.004
    Peng J, Chen J, Xie F, et al. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer[J]. Biomaterials, 2019, 222: 119420. doi: 10.1016/j.biomaterials.2019.119420
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (360) PDF downloads(35) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint