4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ming-Hai Wang, Ruiwen Zhang, Yong-Qing Zhou, Hang-Ping Yao. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction[J]. The Journal of Biomedical Research, 2013, 27(5): 345-356. DOI: 10.7555/JBR.27.20130038
Citation: Ming-Hai Wang, Ruiwen Zhang, Yong-Qing Zhou, Hang-Ping Yao. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction[J]. The Journal of Biomedical Research, 2013, 27(5): 345-356. DOI: 10.7555/JBR.27.20130038

Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction

Funds: 

This work was supported in part by National Institutes of Health grant R01 CA91980 (MHW) and a grant from the Amarillo Area Founda?tion (MHW). RWZ was supported by NIH grants R01 CA112029 and CA121211. Supports were also provided by subproject #2011ZZ01 (MHW) from State Key Laboratory for Diagnosis & Treatment of In?fectious Diseases in First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China. The assistance of Ms. Susan Denney (Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX) in editing the manuscript is greatly appreciated. In addition, the authors declare no competing financial in?terests.

More Information
  • Received Date: March 27, 2013
  • The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor im?plicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor over?expression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic develop?ment. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumor?igenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival ad?vantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the mo?lecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Fangyuan Li, Yaohui Wang, Xiaochun Ping, Jiani C. Yin, Fufeng Wang, Xian Zhang, Xiang Li, Jing Zhai, Lizong Shen. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240118
    [3]Zheyue Wang, Qi Tang, Bende Liu, Wenqing Zhang, Yufeng Chen, Ningfei Ji, Yan Peng, Xiaohui Yang, Daixun Cui, Weiyu Kong, Xiaojun Tang, Tingting Yang, Mingshun Zhang, Xinxia Chang, Jin Zhu, Mao Huang, Zhenqing Feng. A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling[J]. The Journal of Biomedical Research, 2023, 37(3): 166-178. DOI: 10.7555/JBR.36.20220221
    [4]Misevic Gradimir. Single-cell omics analyses with single molecular detection: challenges and perspectives[J]. The Journal of Biomedical Research, 2021, 35(4): 264-276. DOI: 10.7555/JBR.35.20210026
    [5]Yuan Huang, Peng Quan, Yongwei Wang, Dongsheng Zhang, Mingwan Zhang, Rui Li, Nan Jiang. Host-guest interaction of β-cyclodextrin with isomeric ursolic acid and oleanolic acid: physicochemical characterization and molecular modeling study[J]. The Journal of Biomedical Research, 2017, 31(5): 395-407. DOI: 10.7555/JBR.31.20160073
    [6]Salam Pradeep Singh, Chitta Ranjan Deb, Sharif Udin Ahmed, Yenisetti Saratchandra, Bolin Kumar Konwar. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90[J]. The Journal of Biomedical Research, 2016, 30(1): 67-74. DOI: 10.7555/JBR.30.20130158
    [7]Usman Sumo Friend Tambunan, Rizky Archintya Rachmania, Arli Aditya Parikesit. In silico modification of oseltamivir as neuraminidase inhibitor of influenza A virus subtype H1N1[J]. The Journal of Biomedical Research, 2015, 29(2): 150-159. DOI: 10.7555/JBR.29.20130024
    [8]Talambedu Usha, Sushil Kumar Middha, Arvind Kumar Goyal, Mahesh Karthik, DA Manoj, Syed Faizan, Peyush Goyal, HP Prashanth, Veena Pande. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia[J]. The Journal of Biomedical Research, 2014, 28(5): 406-415. DOI: 10.7555/JBR.28.20130110
    [9]Meilin Wang, Haiyan Chu, Zhengdong Zhang, Qingyi Wei. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 179-192. DOI: 10.7555/JBR.27.20130034
    [10]Daniel G Rosen, Zhihong Zhang, Weiwei Shan, Jinsong Liu. Morphological and molecular basis of ovarian serous carcinoma[J]. The Journal of Biomedical Research, 2010, 24(4): 257-263. DOI: 10.1016/S1674-8301(10)60036-X
  • Cited by

    Periodical cited type(15)

    1. Antonelli R, Forconi V, Molesti E, et al. A validated and standardized pseudotyped microneutralization assay as a safe and powerful tool to measure LASSA virus neutralising antibodies for vaccine development and comparison. F1000Res, 2024, 13: 534. DOI:10.12688/f1000research.149578.2
    2. Nahar N, Nazmul Hasan Zilani M, Biswas P, et al. Profiling of secondary metabolite and evaluation of anti-diabetic potency of Crotalaria quinquefolia (L): In-vitro, in-vivo, and in-silico approaches. Saudi Pharm J, 2024, 32(1): 101887. DOI:10.1016/j.jsps.2023.101887
    3. Nur Kabidul Azam M, Biswas P, Mohaimenul Islam Tareq M, et al. Identification of antidiabetic inhibitors from Allophylus villosus and Mycetia sinensis by targeting α-glucosidase and PPAR-γ: In-vitro, in-vivo, and computational evidence. Saudi Pharm J, 2024, 32(1): 101884. DOI:10.1016/j.jsps.2023.101884
    4. Rahman MH, Al Azad S, Uddin MF, et al. WGS-based screening of the co-chaperone protein DjlA-induced curved DNA binding protein A (CbpA) from a new multidrug-resistant zoonotic mastitis-causing Klebsiella pneumoniae strain: a novel molecular target of selective flavonoids. Mol Divers, 2023. DOI:10.1007/s11030-023-10731-6. Online ahead of print
    5. Akash S, Bibi S, Biswas P, et al. Revolutionizing anti-cancer drug discovery against breast cancer and lung cancer by modification of natural genistein: an advanced computational and drug design approach. Front Oncol, 2023, 13: 1228865. DOI:10.3389/fonc.2023.1228865
    6. Sharif MA, Khan AM, Salekeen R, et al. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm J, 2023, 31(8): 101681. DOI:10.1016/j.jsps.2023.06.014
    7. Biswas P, Bibi S, Yousafi Q, et al. Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules, 2023, 28(7): 2977. DOI:10.3390/molecules28072977
    8. Jabin A, Uddin MF, Al Azad S, et al. Target-specificity of different amyrin subunits in impeding HCV influx mechanism inside the human cells considering the quantum tunnel profiles and molecular strings of the CD81 receptor: a combined in silico and in vivo study. In Silico Pharmacol, 2023, 11(1): 8. DOI:10.1007/s40203-023-00144-6
    9. Arefin A, Gage MC. Metformin, Empagliflozin, and Their Combination Modulate Ex-Vivo Macrophage Inflammatory Gene Expression. Int J Mol Sci, 2023, 24(5): 4785. DOI:10.3390/ijms24054785
    10. Morshed AKMH, Al Azad S, Mia MAR, et al. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol Divers, 2023, 27(6): 2651-2672. DOI:10.1007/s11030-022-10573-8
    11. Dey D, Biswas P, Paul P, et al. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers, 2023, 27(3): 1309-1322. DOI:10.1007/s11030-022-10491-9
    12. Islam S, Farjana M, Uddin MR, et al. Molecular identification, characterization, and antagonistic activity profiling of Bacillus cereus LOCK 1002 along with the in-silico analysis of its presumptive bacteriocins. J Adv Vet Anim Res, 2022, 9(4): 663-675. DOI:10.5455/javar.2022.i635
    13. Biswas P, Dey D, Biswas PK, et al. A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci, 2022, 23(19): 11746. DOI:10.3390/ijms231911746
    14. Ferdausi N, Islam S, Rimti FH, et al. Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism. J Adv Vet Anim Res, 2022, 9(2): 230-240. DOI:10.5455/javar.2022.i588
    15. Dey D, Hasan MM, Biswas P, et al. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol, 2022, 12: 899009. DOI:10.3389/fonc.2022.899009

    Other cited types(0)

Catalog

    Article Metrics

    Article views (4039) PDF downloads (1047) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return