Tian Tian, Yajie Zhang, Shouyu Wang, Jianwei Zhou, Shan Xua. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer[J]. The Journal of Biomedical Research, 2012, 26(5): 336-345. DOI: 10.7555/JBR.26.20120045
Citation:
Tian Tian, Yajie Zhang, Shouyu Wang, Jianwei Zhou, Shan Xua. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer[J]. The Journal of Biomedical Research, 2012, 26(5): 336-345. DOI: 10.7555/JBR.26.20120045
Tian Tian, Yajie Zhang, Shouyu Wang, Jianwei Zhou, Shan Xua. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer[J]. The Journal of Biomedical Research, 2012, 26(5): 336-345. DOI: 10.7555/JBR.26.20120045
Citation:
Tian Tian, Yajie Zhang, Shouyu Wang, Jianwei Zhou, Shan Xua. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer[J]. The Journal of Biomedical Research, 2012, 26(5): 336-345. DOI: 10.7555/JBR.26.20120045
Department of Cell Biology, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China
2.
Department of Molecular Cell Biology & Toxicology, School of Public Health, Nanjing Medical University, Nanjing
Funds:
State Key Laboratory of Reproductive Medicine, the project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the National Natural Science Foundation of China (No. 30930080 and 81161120537)
Gastric cancer stem-like cells (GCSCs) have been identified to possess the ability of self-renewal and tumor initiation. However, the mechanisms involved remain largely unknown. Here, we isolated and characterized the GCSCs by side population (SP) sorting procedure and cultured sphere cells (SC) from human gastric cancer cell lines SGC-7901, BGC-823, MGC-803, HGC-27 and MKN-28. The sorting and culture assay revealed that SP cells proliferated in an asymmetric division manner. In addition, SP cells exhibited a higher potential of spheroid colony formation and greater drug resistance than non-SP cells (NSP). Moreover, the SC were found with enhanced capabilities of drug resistance in vitro and tumorigenicity in vivo. Sox2 mRNA and protein was highly and significantly overexpressed in the SP cells and SC. Importantly, downregulation of Sox2 with siRNA obviously reduced spheroid colony formation and doxorubicin efflux, as well as increased apoptosis rate in sphere cells in vitro and suppressed tumorigenicity in vivo. These results suggest that both SP cells and cultured SC enrich with GCSCs and that Sox2 plays a pivotal role in sustaining stem cell properties and might be a potential target for gastric cancer therapy.
Paolino G, Podo Brunetti A, De Rosa C, et al. Anorectal melanoma: systematic review of the current literature of an aggressive type of melanoma. Melanoma Res, 2024, 34(6): 487-496.
DOI:10.1097/CMR.0000000000001003
2.
Illa SK, Mumtaz S, Nath S, et al. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet, 2024, 65(1): 167-180.
DOI:10.1007/s13353-023-00816-1
3.
Ugonabo O, Mohamed M, Ezeh E, et al. A Rare Metastatic Primary Rectal Melanoma in a Geriatric Male. J Med Cases, 2022, 13(8): 369-373.
DOI:10.14740/jmc3929
4.
Si M, Cao X. Considering Computational Mathematics IGHG3 as Malignant Melanoma Is Associated with Immune Infiltration of Malignant Melanoma. Biomed Res Int, 2022, 2022: 4168937.
DOI:10.1155/2022/4168937
5.
Nonaka K, Kudou K, Sasaki S, et al. Primary anorectal malignant melanoma with laparoscopic abdominoperineal resection: a case study and review of the relevant literature. Int Cancer Conf J, 2020, 9(3): 116-122.
DOI:10.1007/s13691-020-00401-x
6.
Heo JR, Hwang KA, Kim SU, et al. A Potential Therapy Using Engineered Stem Cells Prevented Malignant Melanoma in Cellular and Xenograft Mouse Models. Cancer Res Treat, 2019, 51(2): 797-811.
DOI:10.4143/crt.2018.364