• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220083
Citation: Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220083

Acquired immunity and Alzheimer's disease

doi: 10.7555/JBR.36.20220083
More Information
  • Corresponding author: Weixi Feng, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869338; E-mail: weixif@njmu.edu.cn
  • Received: 2022-04-13
  • Revised: 2022-06-18
  • Accepted: 2022-06-27
  • Published: 2022-07-28
  • Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted increasing attention. T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of T cells and B cells in AD.

     

  • CLC number: R749.16, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Alzheimer's Association. 2019 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2019, 15(3): 321–387. doi: 10.1016/j.jalz.2019.01.010
    [2]
    Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312–339. doi: 10.1016/j.cell.2019.09.001
    [3]
    Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease[J]. Nat Rev Neurol, 2015, 11(8): 457–470. doi: 10.1038/nrneurol.2015.119
    [4]
    Xie C, Zhuang X, Niu Z, et al. Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow[J]. Nat Biomed Eng, 2022, 6(1): 76–93. doi: 10.1038/s41551-021-00819-5
    [5]
    Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer's disease[J]. Lancet Neurol, 2015, 14(4): 388–405. doi: 10.1016/S1474-4422(15)70016-5
    [6]
    Ransohoff RM. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353(6301): 777–783. doi: 10.1126/science.aag2590
    [7]
    Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease[J]. Nat Neurosci, 2019, 22(3): 401–412. doi: 10.1038/s41593-018-0332-9
    [8]
    Lautrup S, Lou G, Aman Y, et al. Microglial mitophagy mitigates neuroinflammation in Alzheimer's disease[J]. Neurochem Int, 2019, 129: 104469. doi: 10.1016/j.neuint.2019.104469
    [9]
    Perry VH, Holmes C. Microglial priming in neurodegenerative disease[J]. Nat Rev Neurol, 2014, 10(4): 217–224. doi: 10.1038/nrneurol.2014.38
    [10]
    Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease[J]. Nat Rev Neurosci, 2015, 16(6): 358–372. doi: 10.1038/nrn3880
    [11]
    Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease[J]. Nat Rev Immunol, 2014, 14(7): 463–477. doi: 10.1038/nri3705
    [12]
    Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, et al. Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease[J]. Curr Opin Neurobiol, 2016, 36: 74–81. doi: 10.1016/j.conb.2015.10.004
    [13]
    Salter MW, Stevens B. Microglia emerge as central players in brain disease[J]. Nat Med, 2017, 23(9): 1018–1027. doi: 10.1038/nm.4397
    [14]
    Efthymiou AG, Goate AM. Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk[J]. Mol Neurodegener, 2017, 12(1): 43. doi: 10.1186/s13024-017-0184-x
    [15]
    Mhatre SD, Tsai CA, Rubin AJ, et al. Microglial malfunction: the third rail in the development of Alzheimer's disease[J]. Trends Neurosci, 2015, 38(10): 621–636. doi: 10.1016/j.tins.2015.08.006
    [16]
    Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer's disease[J]. Cell, 2017, 169(7): 1276–1290.e17. doi: 10.1016/j.cell.2017.05.018
    [17]
    Zewinger S, Reiser J, Jankowski V, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation[J]. Nat Immunol, 2020, 21(1): 30–41. doi: 10.1038/s41590-019-0548-1
    [18]
    Osborn LM, Kamphuis W, Wadman WJ, et al. Astrogliosis: an integral player in the pathogenesis of Alzheimer's disease[J]. Prog Neurobiol, 2016, 144: 121–141. doi: 10.1016/j.pneurobio.2016.01.001
    [19]
    Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology[J]. Nat Neurosci, 2013, 16(7): 848–850. doi: 10.1038/nn.3435
    [20]
    Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease[J]. Lancet Neurol, 2013, 12(1): 92–104. doi: 10.1016/S1474-4422(12)70259-4
    [21]
    Deming Y, Filipello F, Cignarella F, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk[J]. Sci Transl Med, 2019, 11(505): eaau2291. doi: 10.1126/scitranslmed.aau2291
    [22]
    Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer's disease: evidence from genome-wide association studies and beyond[J]. Lancet Neurol, 2016, 15(8): 857–868. doi: 10.1016/S1474-4422(16)00127-7
    [23]
    Yuan P, Condello C, Keene CD, et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy[J]. Neuron, 2016, 90(4): 724–739. doi: 10.1016/j.neuron.2016.05.003
    [24]
    Suárez-Calvet M, Araque Caballero MÁ, Kleinberger G, et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer's disease occur after amyloid deposition and neuronal injury[J]. Sci Transl Med, 2016, 8(369): 369ra178. doi: 10.1126/scitranslmed.aag1767
    [25]
    Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712–716. doi: 10.1126/science.aad8373
    [26]
    Riazi K, Galic MA, Kentner AC, et al. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation[J]. J Neurosci, 2015, 35(12): 4942–4952. doi: 10.1523/JNEUROSCI.4485-14.2015
    [27]
    Zhang J, Malik A, Choi HB, et al. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase[J]. Neuron, 2014, 82(1): 195–207. doi: 10.1016/j.neuron.2014.01.043
    [28]
    Lau SF, Chen C, Fu W, et al. IL-33-PU.1 Transcriptome reprogramming drives functional state transition and clearance activity of microglia in alzheimer's disease[J]. Cell Rep, 2020, 31(3): 107530. doi: 10.1016/j.celrep.2020.107530
    [29]
    Huang K, Marcora E, Pimenova AA, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease[J]. Nat Neurosci, 2017, 20(8): 1052–1061. doi: 10.1038/nn.4587
    [30]
    Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111. doi: 10.1126/scitranslmed.3003748
    [31]
    Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7): 991–999. doi: 10.1084/jem.20142290
    [32]
    Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J]. Elife, 2018, 7: e40070. doi: 10.7554/eLife.40070
    [33]
    Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J]. Nature, 2019, 572(7767): 62–66. doi: 10.1038/s41586-019-1419-5
    [34]
    Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337–341. doi: 10.1038/nature14432
    [35]
    Wang L, Zhang Y, Zhao Y, et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice[J]. Brain Pathol, 2019, 29(2): 176–192. doi: 10.1111/bpa.12656
    [36]
    Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717): 185–191. doi: 10.1038/s41586-018-0368-8
    [37]
    Xu Z, Xiao N, Chen Y, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits[J]. Mol Neurodegener, 2015, 10: 58. doi: 10.1186/s13024-015-0056-1
    [38]
    Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease[J]. Neurobiol Dis, 2016, 93: 215–225. doi: 10.1016/j.nbd.2016.05.015
    [39]
    Busse M, Michler E, von Hoff F, et al. Alterations in the peripheral immune system in dementia[J]. J Alzheimers Dis, 2017, 58(4): 1303–1313. doi: 10.3233/JAD-161304
    [40]
    Richartz-Salzburger E, Batra A, Stransky E, et al. Altered lymphocyte distribution in Alzheimer's disease[J]. J Psychiatr Res, 2007, 41(1-2): 174–178. doi: 10.1016/j.jpsychires.2006.01.010
    [41]
    Pellicanò M, Larbi A, Goldeck D, et al. Immune profiling of Alzheimer patients[J]. J Neuroimmunol, 2012, 242(1-2): 52–59. doi: 10.1016/j.jneuroim.2011.11.005
    [42]
    Bulati M, Buffa S, Martorana A, et al. Double negative (IgG+IgD-CD27-) B cells are increased in a cohort of moderate-severe Alzheimer's disease patients and show a pro-inflammatory trafficking receptor phenotype[J]. J Alzheimers Dis, 2015, 44(4): 1241–1251. doi: 10.3233/JAD-142412
    [43]
    Bonotis K, Krikki E, Holeva V, et al. Systemic immune aberrations in Alzheimer's disease patients[J]. J Neuroimmunol, 2008, 193(1-2): 183–187. doi: 10.1016/j.jneuroim.2007.10.020
    [44]
    Speciale L, Calabrese E, Saresella M, et al. Lymphocyte subset patterns and cytokine production in Alzheimer's disease patients[J]. Neurobiol Aging, 2007, 28(8): 1163–1169. doi: 10.1016/j.neurobiolaging.2006.05.020
    [45]
    Larbi A, Pawelec G, Witkowski JM, et al. Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer's disease[J]. J Alzheimers Dis, 2009, 17(1): 91–103. doi: 10.3233/JAD-2009-1015
    [46]
    Bulati M, Buffa S, Candore G, et al. B cells and immunosenescence: a focus on IgG+IgD-CD27- (DN) B cells in aged humans[J]. Ageing Res Rev, 2011, 10(2): 274–284. doi: 10.1016/j.arr.2010.12.002
    [47]
    Steele NZR, Carr JS, Bonham LW, et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case-control study[J]. PLoS Med, 2017, 14(3): e1002272. doi: 10.1371/journal.pmed.1002272
    [48]
    Jiang Q, Jin S, Jiang Y, et al. Alzheimer's disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells[J]. Mol Neurobiol, 2017, 54(1): 594–600. doi: 10.1007/s12035-015-9670-8
    [49]
    Gate D, Saligrama N, Leventhal O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease[J]. Nature, 2020, 577(7790): 399–404. doi: 10.1038/s41586-019-1895-7
    [50]
    Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms[J]. Trends Immunol, 2005, 26(9): 485–495. doi: 10.1016/j.it.2005.07.004
    [51]
    Siffrin V, Brandt AU, Radbruch H, et al. Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization[J]. Brain, 2009, 132(Pt 5): 1247–1258. doi: 10.1093/brain/awn354
    [52]
    Pranzatelli MR, Allison TJ, McGee NR, et al. Cerebrospinal fluid γδ T cell frequency is age-related: a case-control study of 435 children with inflammatory and non-inflammatory neurological disorders[J]. Clin Exp Immunol, 2018, 193(1): 103–112. doi: 10.1111/cei.13122
    [53]
    Cheng X, He P, Yao H, et al. Occludin deficiency with BACE1 elevation in cerebral amyloid angiopathy[J]. Neurology, 2014, 82(19): 1707–1715. doi: 10.1212/WNL.0000000000000403
    [54]
    Carrano A, Hoozemans JJM, van der Vies SM, et al. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J]. Antioxid Redox Signal, 2011, 15(5): 1167–1178. doi: 10.1089/ars.2011.3895
    [55]
    Liu Y, Guo D, Tian L, et al. Peripheral T cells derived from Alzheimer's disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-α-dependent[J]. Neurobiol Aging, 2010, 31(2): 175–188. doi: 10.1016/j.neurobiolaging.2008.03.024
    [56]
    Kerfoot SM, Kubes P. Overlapping roles of P-selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis[J]. J Immunol, 2002, 169(2): 1000–1006. doi: 10.4049/jimmunol.169.2.1000
    [57]
    Reboldi A, Coisne C, Baumjohann D, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE[J]. Nat Immunol, 2009, 10(5): 514–523. doi: 10.1038/ni.1716
    [58]
    Laurent C, Dorothée G, Hunot S, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy[J]. Brain, 2017, 140(1): 184–200. doi: 10.1093/brain/aww270
    [59]
    Smolders J, Remmerswaal EBM, Schuurman KG, et al. Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain[J]. Acta Neuropathol, 2013, 126(4): 525–535. doi: 10.1007/s00401-013-1155-0
    [60]
    Togo T, Akiyama H, Iseki E, et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases[J]. J Neuroimmunol, 2002, 124(1-2): 83–92. doi: 10.1016/S0165-5728(01)00496-9
    [61]
    Agrawal S, Anderson P, Durbeej M, et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis[J]. J Exp Med, 2006, 203(4): 1007–1019. doi: 10.1084/jem.20051342
    [62]
    Song J, Wu C, Korpos E, et al. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration[J]. Cell Rep, 2015, 10(7): 1040–1054. doi: 10.1016/j.celrep.2015.01.037
    [63]
    Betsholtz C. Physiology: double function at the blood-brain barrier[J]. Nature, 2014, 509(7501): 432–433. doi: 10.1038/nature13339
    [64]
    Carrano A, Hoozemans JJM, van der Vies SM, et al. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J]. Antioxid Redox Signal, 2011, 15(5): 1167–1178. doi: 10.1089/ars.2011.3895
    [65]
    Kook SY, Seok Hong H, Moon M, et al. Disruption of blood-brain barrier in Alzheimer disease pathogenesis[J]. Tissue Barriers, 2013, 1(2): e23993. doi: 10.4161/tisb.23993
    [66]
    Stamatovic SM, Martinez-Revollar G, Hu A, et al. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging[J]. Neurobiol Dis, 2019, 126: 105–116. doi: 10.1016/j.nbd.2018.09.006
    [67]
    Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates[J]. Nat Rev Immunol, 2013, 13(3): 206–218. doi: 10.1038/nri3391
    [68]
    Engelhardt B, Wolburg-Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation[J]. Microsc Res Tech, 2001, 52(1): 112–129. doi: 10.1002/1097-0029(20010101)52:1<112::AID-JEMT13>3.0.CO;2-5
    [69]
    Choi JD, Moon Y, Kim HJ, et al. Choroid plexus volume and permeability at brain MRI within the alzheimer disease clinical spectrum[J]. Radiology, 2022, 212400. doi: 10.1148/radiol.212400
    [70]
    Vargas T, Ugalde C, Spuch C, et al. Aβ accumulation in choroid plexus is associated with mitochondrial-induced apoptosis[J]. Neurobiol Aging, 2010, 31(9): 1569–1581. doi: 10.1016/j.neurobiolaging.2008.08.017
    [71]
    Brkic M, Balusu S, Van Wonterghem E, et al. Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases[J]. J Neurosci, 2015, 35(37): 12766–12778. doi: 10.1523/JNEUROSCI.0006-15.2015
    [72]
    Schläger C, Körner H, Krueger M, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid[J]. Nature, 2016, 530(7590): 349–353. doi: 10.1038/nature16939
    [73]
    Roth TL, Nayak D, Atanasijevic T, et al. Transcranial amelioration of inflammation and cell death after brain injury[J]. Nature, 2014, 505(7482): 223–228. doi: 10.1038/nature12808
    [74]
    Barker CF, Billingham RE. The role of afferent lymphatics in the rejection of skin homografts[J]. J Exp Med, 1968, 128(1): 197–221. doi: 10.1084/jem.128.1.197
    [75]
    Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9): 623–635. doi: 10.1038/nri3265
    [76]
    Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature[J]. Nat Neurosci, 2018, 21(10): 1380–1391. doi: 10.1038/s41593-018-0227-9
    [77]
    Rogers J, Luber-Narod J, Styren SD, et al. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease[J]. Neurobiol Aging, 1988, 9(4): 339–349. doi: 10.1016/S0197-4580(88)80079-4
    [78]
    Sardi F, Fassina L, Venturini L, et al. Alzheimer's disease, autoimmunity and inflammation. The good, the bad and the ugly[J]. Autoimmun Rev, 2011, 11(2): 149–153. doi: 10.1016/j.autrev.2011.09.005
    [79]
    Monsonego A, Zota V, Karni A, et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease[J]. J Clin Invest, 2003, 112(3): 415–422. doi: 10.1172/JCI200318104
    [80]
    Browne TC, McQuillan K, McManus RM, et al. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J]. J Immunol, 2013, 190(5): 2241–2251. doi: 10.4049/jimmunol.1200947
    [81]
    Fisher Y, Strominger I, Biton S, et al. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance[J]. J Immunol, 2014, 192(1): 92–102. doi: 10.4049/jimmunol.1301707
    [82]
    Cao C, Arendash GW, Dickson A, et al. Aβ-specific Th2 cells provide cognitive and pathological benefits to Alzheimer's mice without infiltrating the CNS[J]. Neurobiol Dis, 2009, 34(1): 63–70. doi: 10.1016/j.nbd.2008.12.015
    [83]
    Asuni AA, Boutajangout A, Scholtzova H, et al. Vaccination of Alzheimer's model mice with Aβ derivative in alum adjuvant reduces Aβ burden without microhemorrhages[J]. Eur J Neurosci, 2006, 24(9): 2530–2542. doi: 10.1111/j.1460-9568.2006.05149.x
    [84]
    Lambracht-Washington D, Qu B, Fu M, et al. DNA immunization against amyloid beta 42 has high potential as safe therapy for Alzheimer's disease as it diminishes antigen-specific Th1 and Th17 cell proliferation[J]. Cell Mol Neurobiol, 2011, 31(6): 867–874. doi: 10.1007/s10571-011-9680-7
    [85]
    Fu H, Liu B, Frost JL, et al. Amyloid-β immunotherapy for Alzheimer's disease[J]. CNS Neurol Disord Drug Targets, 2010, 9(2): 197–206. doi: 10.2174/187152710791012017
    [86]
    Goldeck D, Larbi A, Pellicanó M, et al. Enhanced chemokine receptor expression on leukocytes of patients with Alzheimer's disease[J]. PLoS One, 2013, 8(6): e66664. doi: 10.1371/journal.pone.0066664
    [87]
    Zhang J, Ke K, Liu Z, et al. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ1–42-induced Alzheimer's disease model rats[J]. PLoS One, 2013, 8(10): e75786. doi: 10.1371/journal.pone.0075786
    [88]
    Jones JL, Anderson JM, Phuah CL, et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity[J]. Brain, 2010, 133(Pt 8): 2232–2247. doi: 10.1093/brain/awq176
    [89]
    Alves S, Churlaud G, Audrain M, et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice[J]. Brain, 2017, 140(3): 826–842. doi: 10.1093/brain/aww330
    [90]
    Dansokho C, Ait Ahmed D, Aid S, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology[J]. Brain, 2016, 139(Pt 4): 1237–1251. doi: 10.1093/brain/awv408
    [91]
    Di Liberto G, Pantelyushin S, Kreutzfeldt M, et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping[J]. Cell, 2018, 175(2): 458–471.e19. doi: 10.1016/j.cell.2018.07.049
    [92]
    Mattsson N, Andreasson U, Zetterberg H, et al. Association of plasma neurofilament light with neurodegeneration in patients with alzheimer disease[J]. JAMA Neurol, 2017, 74(5): 557–566. doi: 10.1001/jamaneurol.2016.6117
    [93]
    Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease[J]. Nat Med, 2019, 25(2): 277–283. doi: 10.1038/s41591-018-0304-3
    [94]
    Krishnamoorthy G, Saxena A, Mars LT, et al. Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis[J]. Nat Med, 2009, 15(6): 626–632. doi: 10.1038/nm.1975
    [95]
    McQuillan K, Lynch MA, Mills KHG. Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells[J]. Brain Behav Immun, 2010, 24(4): 598–607. doi: 10.1016/j.bbi.2010.01.003
    [96]
    Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2[J]. J Exp Med, 2005, 201(4): 647–657. doi: 10.1084/jem.20041611
    [97]
    Gaikwad S, Larionov S, Wang Y, et al. Signal regulatory protein-β1: a microglial modulator of phagocytosis in Alzheimer's disease[J]. Am J Pathol, 2009, 175(6): 2528–2539. doi: 10.2353/ajpath.2009.090147
    [98]
    Obregon D, Hou H, Bai Y, et al. CD40L disruption enhances Aβ vaccine-mediated reduction of cerebral amyloidosis while minimizing cerebral amyloid angiopathy and inflammation[J]. Neurobiol Dis, 2008, 29(2): 336–353. doi: 10.1016/j.nbd.2007.09.009
    [99]
    Le Blon D, Guglielmetti C, Hoornaert C, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model[J]. J Neuroinflammation, 2016, 13(1): 288. doi: 10.1186/s12974-016-0756-7
    [100]
    Guarda G, Dostert C, Staehli F, et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes[J]. Nature, 2009, 460(7252): 269–273. doi: 10.1038/nature08100
    [101]
    Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype[J]. J Immunol, 2008, 180(6): 3866–3873. doi: 10.4049/jimmunol.180.6.3866
    [102]
    Beurel E, Harrington LE, Buchser W, et al. Astrocytes modulate the polarization of CD4+ T cells to Th1 cells[J]. PLoS One, 2014, 9(1): e86257. doi: 10.1371/journal.pone.0086257
    [103]
    Xie L, Choudhury GR, Winters A, et al. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10[J]. Eur J Immunol, 2015, 45(1): 180–191. doi: 10.1002/eji.201444823
    [104]
    Dombrowski Y, O'Hagan T, Dittmer M, et al. Regulatory T cells promote myelin regeneration in the central nervous system[J]. Nat Neurosci, 2017, 20(5): 674–680. doi: 10.1038/nn.4528
    [105]
    Aloisi F, De Simone R, Columba-Cabezas S, et al. Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells[J]. J Immunol, 2000, 164(4): 1705–1712. doi: 10.4049/jimmunol.164.4.1705
    [106]
    Das Sarma J, Ciric B, Marek R, et al. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis[J]. J Neuroinflammation, 2009, 6: 14. doi: 10.1186/1742-2094-6-14
    [107]
    Rock RB, Hu S, Deshpande A, et al. Transcriptional response of human microglial cells to interferon-γ[J]. Genes Immun, 2005, 6(8): 712–719. doi: 10.1038/sj.gene.6364246
    [108]
    Togo T, Akiyama H, Kondo H, et al. Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases[J]. Brain Res, 2000, 885(1): 117–121. doi: 10.1016/S0006-8993(00)02984-X
    [109]
    Townsend KP, Town T, Mori T, et al. CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid β-peptide[J]. Eur J Immunol, 2005, 35(3): 901–910. doi: 10.1002/eji.200425585
    [110]
    McManus RM, Mills KHG, Lynch MA. T cells-protective or pathogenic in Alzheimer's disease?[J]. J Neuroimmune Pharmacol, 2015, 10(4): 547–560. doi: 10.1007/s11481-015-9612-2
    [111]
    Zeinstra E, Wilczak N, De Keyser J. Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7–1 and B7–2[J]. J Neuroimmunol, 2003, 135(1-2): 166–171. doi: 10.1016/S0165-5728(02)00462-9
    [112]
    Yang J, Kou J, Lalonde R, et al. Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer's disease[J]. Brain Behav Immun, 2017, 65: 262–273. doi: 10.1016/j.bbi.2017.05.012
    [113]
    Weiss R, Lifshitz V, Frenkel D. TGF-β1 affects endothelial cell interaction with macrophages and T cells leading to the development of cerebrovascular amyloidosis[J]. Brain Behav Immun, 2011, 25(5): 1017–1024. doi: 10.1016/j.bbi.2010.11.012
    [114]
    Man S, Ma Y, Shang D, et al. Peripheral T cells overexpress MIP-1α to enhance its transendothelial migration in Alzheimer's disease[J]. Neurobiol Aging, 2007, 28(4): 485–496. doi: 10.1016/j.neurobiolaging.2006.02.013
    [115]
    Pietronigro E, Zenaro E, Bianca VD, et al. Blockade of α4 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer's disease[J]. Sci Rep, 2019, 9(1): 12055. doi: 10.1038/s41598-019-48538-x
    [116]
    Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease[J]. Nat Genet, 2010, 42(9): 781–785. doi: 10.1038/ng.642
    [117]
    Fuller JP, Stavenhagen JB, Teeling JL. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease[J]. Front Neurosci, 2014, 8: 235. doi: 10.3389/fnins.2014.00235
    [118]
    Piazza F, Greenberg SM, Savoiardo M, et al. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies[J]. Ann Neurol, 2013, 73(4): 449–458. doi: 10.1002/ana.23857
    [119]
    Sollvander S, Ekholm-Pettersson F, Brundin RM, et al. Increased number of plasma B cells producing autoantibodies against Aβ42 protofibrils in Alzheimer's disease[J]. J Alzheimers Dis, 2015, 48(1): 63–72. doi: 10.3233/JAD-150236
    [120]
    Maftei M, Thurm F, Schnack C, et al. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer's disease patients[J]. PLoS One, 2013, 8(7): e68996. doi: 10.1371/journal.pone.0068996
    [121]
    Mimouni D, Gdalevich M, Mimouni FB, et al. Does immune serum globulin confer protection against skin diseases?[J]. Int J Dermatol, 2000, 39(8): 628–631. doi: 10.1046/j.1365-4362.2000.00983.x
    [122]
    Bruhns P, Samuelsson A, Pollard JW, et al. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease[J]. Immunity, 2003, 18(4): 573–581. doi: 10.1016/S1074-7613(03)00080-3
    [123]
    Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells[J]. Nat Med, 2006, 12(6): 688–692. doi: 10.1038/nm1416
    [124]
    Marsh SE, Abud EM, Lakatos A, et al. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function[J]. Proc Natl Acad Sci USA, 2016, 113(9): E1316–E1325. doi: 10.1073/pnas.1525466113
    [125]
    Cribbs DH, Berchtold NC, Perreau V, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study[J]. J Neuroinflammation, 2012, 9: 179. doi: 10.1186/1742-2094-9-179
    [126]
    Prüss H, Höltje M, Maier N, et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment[J]. Neurology, 2012, 78(22): 1743–1753. doi: 10.1212/WNL.0b013e318258300d
    [127]
    Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic[J]. Annu Rev Immunol, 2006, 24: 467–496. doi: 10.1146/annurev.immunol.24.021605.090517
    [128]
    Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes[J]. Annu Rev Immunol, 1990, 8: 773–793. doi: 10.1146/annurev.iy.08.040190.004013
    [129]
    Avalos AM, Ploegh HL. Early BCR events and antigen capture, processing, and loading on MHC class II on B cells[J]. Front Immunol, 2014, 5: 92. doi: 10.3389/fimmu.2014.00092
    [130]
    Sonoda KH, Stein-Streilein J. CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance[J]. Eur J Immunol, 2002, 32(3): 848–857. doi: 10.1002/1521-4141(200203)32:3<848::AID-IMMU848>3.0.CO;2-I
    [131]
    Tomihara K, Shin T, Hurez VJ, et al. Aging-associated B7-DC+ B cells enhance anti-tumor immunity via Th1 and Th17 induction[J]. Aging Cell, 2012, 11(1): 128–138. doi: 10.1111/j.1474-9726.2011.00764.x
    [132]
    Xiong L, Xue L, Du R, et al. Single-cell RNA sequencing reveals B cell-related molecular biomarkers for Alzheimer's disease[J]. Exp Mol Med, 2021, 53(12): 1888–1901. doi: 10.1038/s12276-021-00714-8
    [133]
    Kim K, Wang X, Ragonnaud E, et al. Therapeutic B-cell depletion reverses progression of Alzheimer's disease[J]. Nat Commun, 2021, 12(1): 2185. doi: 10.1038/s41467-021-22479-4
    [134]
    Weber MS, Prod'Homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity[J]. Ann Neurol, 2010, 68(3): 369–383. doi: 10.1002/ana.22081
    [135]
    Pierson ER, Stromnes IM, Goverman JM. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system[J]. J Immunol, 2014, 192(3): 929–939. doi: 10.4049/jimmunol.1302171
    [136]
    Desmond DW, Moroney JT, Sano M, et al. Incidence of dementia after ischemic stroke: results of a longitudinal study[J]. Stroke, 2002, 33(9): 2254–2262. doi: 10.1161/01.STR.0000028235.91778.95
    [137]
    Mena H, Cadavid D, Rushing EJ. Human cerebral infarct: a proposed histopathologic classification based on 137 cases[J]. Acta Neuropathol, 2004, 108(6): 524–530. doi: 10.1007/s00401-004-0918-z
    [138]
    Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function[J]. Immunity, 2015, 42(4): 607–612. doi: 10.1016/j.immuni.2015.04.005
    [139]
    Olkhanud PB, Damdinsuren B, Bodogai M, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells[J]. Cancer Res, 2011, 71(10): 3505–3515. doi: 10.1158/0008-5472.CAN-10-4316
    [140]
    Minter MR, Main BS, Brody KM, et al. Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro[J]. J Neuroinflammation, 2015, 12: 71. doi: 10.1186/s12974-015-0263-2
    [141]
    Bodogai M, Moritoh K, Lee-Chang C, et al. Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells[J]. Cancer Res, 2015, 75(17): 3456–3465. doi: 10.1158/0008-5472.CAN-14-3077
    [142]
    Sun J, Flach CF, Czerkinsky C, et al. B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit[J]. J Immunol, 2008, 181(12): 8278–8287. doi: 10.4049/jimmunol.181.12.8278
    [143]
    Shen P, Roch T, Lampropoulou V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases[J]. Nature, 2014, 507(7492): 366–370. doi: 10.1038/nature12979
    [144]
    Matsushita T, Yanaba K, Bouaziz JD, et al. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression[J]. J Clin Invest, 2008, 118(10): 3420–3430. doi: 10.1172/JCI36030
    [145]
    Collison LW, Chaturvedi V, Henderson AL, et al. IL-35-mediated induction of a potent regulatory T cell population[J]. Nat Immunol, 2010, 11(12): 1093–1101. doi: 10.1038/ni.1952
    [146]
    Kurnellas MP, Ghosn EEB, Schartner JM, et al. Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease[J]. Proc Natl Acad Sci U S A, 2015, 112(49): 15016–15023. doi: 10.1073/pnas.1521206112
    [147]
    Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization[J]. Neurology, 2003, 61(1): 46–54. doi: 10.1212/01.WNL.0000073623.84147.A8
    [148]
    Nicoll JAR, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report[J]. Nat Med, 2003, 9(4): 448–452. doi: 10.1038/nm840
    [149]
    Saresella M, Calabrese E, Marventano I, et al. A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer's disease[J]. Neurobiol Aging, 2012, 33(3): 624.e11–624.e22. doi: 10.1016/j.neurobiolaging.2011.03.004
    [150]
    Baruch K, Deczkowska A, Rosenzweig N, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease[J]. Nat Med, 2016, 22(2): 135–137. doi: 10.1038/nm.4022
    [151]
    Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model[J]. Nat Commun, 2019, 10(1): 465. doi: 10.1038/s41467-019-08352-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (194) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return