Citation: | Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research, 2023, 37(1): 15-29. doi: 10.7555/JBR.36.20220083 |
[1] |
Alzheimer's Association. 2019 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2019, 15(3): 321–387. doi: 10.1016/j.jalz.2019.01.010
|
[2] |
Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312–339. doi: 10.1016/j.cell.2019.09.001
|
[3] |
Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease[J]. Nat Rev Neurol, 2015, 11(8): 457–470. doi: 10.1038/nrneurol.2015.119
|
[4] |
Xie C, Zhuang X, Niu Z, et al. Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow[J]. Nat Biomed Eng, 2022, 6(1): 76–93. doi: 10.1038/s41551-021-00819-5
|
[5] |
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer's disease[J]. Lancet Neurol, 2015, 14(4): 388–405. doi: 10.1016/S1474-4422(15)70016-5
|
[6] |
Ransohoff RM. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353(6301): 777–783. doi: 10.1126/science.aag2590
|
[7] |
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease[J]. Nat Neurosci, 2019, 22(3): 401–412. doi: 10.1038/s41593-018-0332-9
|
[8] |
Lautrup S, Lou G, Aman Y, et al. Microglial mitophagy mitigates neuroinflammation in Alzheimer's disease[J]. Neurochem Int, 2019, 129: 104469. doi: 10.1016/j.neuint.2019.104469
|
[9] |
Perry VH, Holmes C. Microglial priming in neurodegenerative disease[J]. Nat Rev Neurol, 2014, 10(4): 217–224. doi: 10.1038/nrneurol.2014.38
|
[10] |
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease[J]. Nat Rev Neurosci, 2015, 16(6): 358–372. doi: 10.1038/nrn3880
|
[11] |
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease[J]. Nat Rev Immunol, 2014, 14(7): 463–477. doi: 10.1038/nri3705
|
[12] |
Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, et al. Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease[J]. Curr Opin Neurobiol, 2016, 36: 74–81. doi: 10.1016/j.conb.2015.10.004
|
[13] |
Salter MW, Stevens B. Microglia emerge as central players in brain disease[J]. Nat Med, 2017, 23(9): 1018–1027. doi: 10.1038/nm.4397
|
[14] |
Efthymiou AG, Goate AM. Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk[J]. Mol Neurodegener, 2017, 12(1): 43. doi: 10.1186/s13024-017-0184-x
|
[15] |
Mhatre SD, Tsai CA, Rubin AJ, et al. Microglial malfunction: the third rail in the development of Alzheimer's disease[J]. Trends Neurosci, 2015, 38(10): 621–636. doi: 10.1016/j.tins.2015.08.006
|
[16] |
Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer's disease[J]. Cell, 2017, 169(7): 1276–1290.e17. doi: 10.1016/j.cell.2017.05.018
|
[17] |
Zewinger S, Reiser J, Jankowski V, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation[J]. Nat Immunol, 2020, 21(1): 30–41. doi: 10.1038/s41590-019-0548-1
|
[18] |
Osborn LM, Kamphuis W, Wadman WJ, et al. Astrogliosis: an integral player in the pathogenesis of Alzheimer's disease[J]. Prog Neurobiol, 2016, 144: 121–141. doi: 10.1016/j.pneurobio.2016.01.001
|
[19] |
Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology[J]. Nat Neurosci, 2013, 16(7): 848–850. doi: 10.1038/nn.3435
|
[20] |
Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease[J]. Lancet Neurol, 2013, 12(1): 92–104. doi: 10.1016/S1474-4422(12)70259-4
|
[21] |
Deming Y, Filipello F, Cignarella F, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk[J]. Sci Transl Med, 2019, 11(505): eaau2291. doi: 10.1126/scitranslmed.aau2291
|
[22] |
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer's disease: evidence from genome-wide association studies and beyond[J]. Lancet Neurol, 2016, 15(8): 857–868. doi: 10.1016/S1474-4422(16)00127-7
|
[23] |
Yuan P, Condello C, Keene CD, et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy[J]. Neuron, 2016, 90(4): 724–739. doi: 10.1016/j.neuron.2016.05.003
|
[24] |
Suárez-Calvet M, Araque Caballero MÁ, Kleinberger G, et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer's disease occur after amyloid deposition and neuronal injury[J]. Sci Transl Med, 2016, 8(369): 369ra178. doi: 10.1126/scitranslmed.aag1767
|
[25] |
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712–716. doi: 10.1126/science.aad8373
|
[26] |
Riazi K, Galic MA, Kentner AC, et al. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation[J]. J Neurosci, 2015, 35(12): 4942–4952. doi: 10.1523/JNEUROSCI.4485-14.2015
|
[27] |
Zhang J, Malik A, Choi HB, et al. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase[J]. Neuron, 2014, 82(1): 195–207. doi: 10.1016/j.neuron.2014.01.043
|
[28] |
Lau SF, Chen C, Fu W, et al. IL-33-PU.1 Transcriptome reprogramming drives functional state transition and clearance activity of microglia in alzheimer's disease[J]. Cell Rep, 2020, 31(3): 107530. doi: 10.1016/j.celrep.2020.107530
|
[29] |
Huang K, Marcora E, Pimenova AA, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease[J]. Nat Neurosci, 2017, 20(8): 1052–1061. doi: 10.1038/nn.4587
|
[30] |
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111. doi: 10.1126/scitranslmed.3003748
|
[31] |
Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7): 991–999. doi: 10.1084/jem.20142290
|
[32] |
Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J]. Elife, 2018, 7: e40070. doi: 10.7554/eLife.40070
|
[33] |
Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J]. Nature, 2019, 572(7767): 62–66. doi: 10.1038/s41586-019-1419-5
|
[34] |
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337–341. doi: 10.1038/nature14432
|
[35] |
Wang L, Zhang Y, Zhao Y, et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice[J]. Brain Pathol, 2019, 29(2): 176–192. doi: 10.1111/bpa.12656
|
[36] |
Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717): 185–191. doi: 10.1038/s41586-018-0368-8
|
[37] |
Xu Z, Xiao N, Chen Y, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits[J]. Mol Neurodegener, 2015, 10: 58. doi: 10.1186/s13024-015-0056-1
|
[38] |
Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease[J]. Neurobiol Dis, 2016, 93: 215–225. doi: 10.1016/j.nbd.2016.05.015
|
[39] |
Busse M, Michler E, von Hoff F, et al. Alterations in the peripheral immune system in dementia[J]. J Alzheimers Dis, 2017, 58(4): 1303–1313. doi: 10.3233/JAD-161304
|
[40] |
Richartz-Salzburger E, Batra A, Stransky E, et al. Altered lymphocyte distribution in Alzheimer's disease[J]. J Psychiatr Res, 2007, 41(1-2): 174–178. doi: 10.1016/j.jpsychires.2006.01.010
|
[41] |
Pellicanò M, Larbi A, Goldeck D, et al. Immune profiling of Alzheimer patients[J]. J Neuroimmunol, 2012, 242(1-2): 52–59. doi: 10.1016/j.jneuroim.2011.11.005
|
[42] |
Bulati M, Buffa S, Martorana A, et al. Double negative (IgG+IgD-CD27-) B cells are increased in a cohort of moderate-severe Alzheimer's disease patients and show a pro-inflammatory trafficking receptor phenotype[J]. J Alzheimers Dis, 2015, 44(4): 1241–1251. doi: 10.3233/JAD-142412
|
[43] |
Bonotis K, Krikki E, Holeva V, et al. Systemic immune aberrations in Alzheimer's disease patients[J]. J Neuroimmunol, 2008, 193(1-2): 183–187. doi: 10.1016/j.jneuroim.2007.10.020
|
[44] |
Speciale L, Calabrese E, Saresella M, et al. Lymphocyte subset patterns and cytokine production in Alzheimer's disease patients[J]. Neurobiol Aging, 2007, 28(8): 1163–1169. doi: 10.1016/j.neurobiolaging.2006.05.020
|
[45] |
Larbi A, Pawelec G, Witkowski JM, et al. Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer's disease[J]. J Alzheimers Dis, 2009, 17(1): 91–103. doi: 10.3233/JAD-2009-1015
|
[46] |
Bulati M, Buffa S, Candore G, et al. B cells and immunosenescence: a focus on IgG+IgD-CD27- (DN) B cells in aged humans[J]. Ageing Res Rev, 2011, 10(2): 274–284. doi: 10.1016/j.arr.2010.12.002
|
[47] |
Steele NZR, Carr JS, Bonham LW, et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case-control study[J]. PLoS Med, 2017, 14(3): e1002272. doi: 10.1371/journal.pmed.1002272
|
[48] |
Jiang Q, Jin S, Jiang Y, et al. Alzheimer's disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells[J]. Mol Neurobiol, 2017, 54(1): 594–600. doi: 10.1007/s12035-015-9670-8
|
[49] |
Gate D, Saligrama N, Leventhal O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease[J]. Nature, 2020, 577(7790): 399–404. doi: 10.1038/s41586-019-1895-7
|
[50] |
Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms[J]. Trends Immunol, 2005, 26(9): 485–495. doi: 10.1016/j.it.2005.07.004
|
[51] |
Siffrin V, Brandt AU, Radbruch H, et al. Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization[J]. Brain, 2009, 132(Pt 5): 1247–1258. doi: 10.1093/brain/awn354
|
[52] |
Pranzatelli MR, Allison TJ, McGee NR, et al. Cerebrospinal fluid γδ T cell frequency is age-related: a case-control study of 435 children with inflammatory and non-inflammatory neurological disorders[J]. Clin Exp Immunol, 2018, 193(1): 103–112. doi: 10.1111/cei.13122
|
[53] |
Cheng X, He P, Yao H, et al. Occludin deficiency with BACE1 elevation in cerebral amyloid angiopathy[J]. Neurology, 2014, 82(19): 1707–1715. doi: 10.1212/WNL.0000000000000403
|
[54] |
Carrano A, Hoozemans JJM, van der Vies SM, et al. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J]. Antioxid Redox Signal, 2011, 15(5): 1167–1178. doi: 10.1089/ars.2011.3895
|
[55] |
Liu Y, Guo D, Tian L, et al. Peripheral T cells derived from Alzheimer's disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-α-dependent[J]. Neurobiol Aging, 2010, 31(2): 175–188. doi: 10.1016/j.neurobiolaging.2008.03.024
|
[56] |
Kerfoot SM, Kubes P. Overlapping roles of P-selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis[J]. J Immunol, 2002, 169(2): 1000–1006. doi: 10.4049/jimmunol.169.2.1000
|
[57] |
Reboldi A, Coisne C, Baumjohann D, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE[J]. Nat Immunol, 2009, 10(5): 514–523. doi: 10.1038/ni.1716
|
[58] |
Laurent C, Dorothée G, Hunot S, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy[J]. Brain, 2017, 140(1): 184–200. doi: 10.1093/brain/aww270
|
[59] |
Smolders J, Remmerswaal EBM, Schuurman KG, et al. Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain[J]. Acta Neuropathol, 2013, 126(4): 525–535. doi: 10.1007/s00401-013-1155-0
|
[60] |
Togo T, Akiyama H, Iseki E, et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases[J]. J Neuroimmunol, 2002, 124(1-2): 83–92. doi: 10.1016/S0165-5728(01)00496-9
|
[61] |
Agrawal S, Anderson P, Durbeej M, et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis[J]. J Exp Med, 2006, 203(4): 1007–1019. doi: 10.1084/jem.20051342
|
[62] |
Song J, Wu C, Korpos E, et al. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration[J]. Cell Rep, 2015, 10(7): 1040–1054. doi: 10.1016/j.celrep.2015.01.037
|
[63] |
Betsholtz C. Physiology: double function at the blood-brain barrier[J]. Nature, 2014, 509(7501): 432–433. doi: 10.1038/nature13339
|
[64] |
Kook SY, Seok Hong H, Moon M, et al. Disruption of blood-brain barrier in Alzheimer disease pathogenesis[J]. Tissue Barriers, 2013, 1(2): e23993. doi: 10.4161/tisb.23993
|
[65] |
Stamatovic SM, Martinez-Revollar G, Hu A, et al. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging[J]. Neurobiol Dis, 2019, 126: 105–116. doi: 10.1016/j.nbd.2018.09.006
|
[66] |
Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates[J]. Nat Rev Immunol, 2013, 13(3): 206–218. doi: 10.1038/nri3391
|
[67] |
Engelhardt B, Wolburg-Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation[J]. Microsc Res Tech, 2001, 52(1): 112–129. doi: 10.1002/1097-0029(20010101)52:1<112::AID-JEMT13>3.0.CO;2-5
|
[68] |
Choi JD, Moon Y, Kim HJ, et al. Choroid plexus volume and permeability at brain MRI within the alzheimer disease clinical spectrum[J]. Radiology, 2022, 212400. doi: 10.1148/radiol.212400
|
[69] |
Vargas T, Ugalde C, Spuch C, et al. Aβ accumulation in choroid plexus is associated with mitochondrial-induced apoptosis[J]. Neurobiol Aging, 2010, 31(9): 1569–1581. doi: 10.1016/j.neurobiolaging.2008.08.017
|
[70] |
Brkic M, Balusu S, Van Wonterghem E, et al. Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases[J]. J Neurosci, 2015, 35(37): 12766–12778. doi: 10.1523/JNEUROSCI.0006-15.2015
|
[71] |
Schläger C, Körner H, Krueger M, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid[J]. Nature, 2016, 530(7590): 349–353. doi: 10.1038/nature16939
|
[72] |
Roth TL, Nayak D, Atanasijevic T, et al. Transcranial amelioration of inflammation and cell death after brain injury[J]. Nature, 2014, 505(7482): 223–228. doi: 10.1038/nature12808
|
[73] |
Barker CF, Billingham RE. The role of afferent lymphatics in the rejection of skin homografts[J]. J Exp Med, 1968, 128(1): 197–221. doi: 10.1084/jem.128.1.197
|
[74] |
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9): 623–635. doi: 10.1038/nri3265
|
[75] |
Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature[J]. Nat Neurosci, 2018, 21(10): 1380–1391. doi: 10.1038/s41593-018-0227-9
|
[76] |
Rogers J, Luber-Narod J, Styren SD, et al. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease[J]. Neurobiol Aging, 1988, 9(4): 339–349. doi: 10.1016/S0197-4580(88)80079-4
|
[77] |
Sardi F, Fassina L, Venturini L, et al. Alzheimer's disease, autoimmunity and inflammation. The good, the bad and the ugly[J]. Autoimmun Rev, 2011, 11(2): 149–153. doi: 10.1016/j.autrev.2011.09.005
|
[78] |
Monsonego A, Zota V, Karni A, et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease[J]. J Clin Invest, 2003, 112(3): 415–422. doi: 10.1172/JCI200318104
|
[79] |
Browne TC, McQuillan K, McManus RM, et al. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J]. J Immunol, 2013, 190(5): 2241–2251. doi: 10.4049/jimmunol.1200947
|
[80] |
Fisher Y, Strominger I, Biton S, et al. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance[J]. J Immunol, 2014, 192(1): 92–102. doi: 10.4049/jimmunol.1301707
|
[81] |
Cao C, Arendash GW, Dickson A, et al. Aβ-specific Th2 cells provide cognitive and pathological benefits to Alzheimer's mice without infiltrating the CNS[J]. Neurobiol Dis, 2009, 34(1): 63–70. doi: 10.1016/j.nbd.2008.12.015
|
[82] |
Asuni AA, Boutajangout A, Scholtzova H, et al. Vaccination of Alzheimer's model mice with Aβ derivative in alum adjuvant reduces Aβ burden without microhemorrhages[J]. Eur J Neurosci, 2006, 24(9): 2530–2542. doi: 10.1111/j.1460-9568.2006.05149.x
|
[83] |
Lambracht-Washington D, Qu B, Fu M, et al. DNA immunization against amyloid beta 42 has high potential as safe therapy for Alzheimer's disease as it diminishes antigen-specific Th1 and Th17 cell proliferation[J]. Cell Mol Neurobiol, 2011, 31(6): 867–874. doi: 10.1007/s10571-011-9680-7
|
[84] |
Fu H, Liu B, Frost JL, et al. Amyloid-β immunotherapy for Alzheimer's disease[J]. CNS Neurol Disord Drug Targets, 2010, 9(2): 197–206. doi: 10.2174/187152710791012017
|
[85] |
Goldeck D, Larbi A, Pellicanó M, et al. Enhanced chemokine receptor expression on leukocytes of patients with Alzheimer's disease[J]. PLoS One, 2013, 8(6): e66664. doi: 10.1371/journal.pone.0066664
|
[86] |
Zhang J, Ke K, Liu Z, et al. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ1–42-induced Alzheimer's disease model rats[J]. PLoS One, 2013, 8(10): e75786. doi: 10.1371/journal.pone.0075786
|
[87] |
Jones JL, Anderson JM, Phuah CL, et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity[J]. Brain, 2010, 133(Pt 8): 2232–2247. doi: 10.1093/brain/awq176
|
[88] |
Alves S, Churlaud G, Audrain M, et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice[J]. Brain, 2017, 140(3): 826–842. doi: 10.1093/brain/aww330
|
[89] |
Dansokho C, Ait Ahmed D, Aid S, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology[J]. Brain, 2016, 139(Pt 4): 1237–1251. doi: 10.1093/brain/awv408
|
[90] |
Di Liberto G, Pantelyushin S, Kreutzfeldt M, et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping[J]. Cell, 2018, 175(2): 458–471.e19. doi: 10.1016/j.cell.2018.07.049
|
[91] |
Mattsson N, Andreasson U, Zetterberg H, et al. Association of plasma neurofilament light with neurodegeneration in patients with alzheimer disease[J]. JAMA Neurol, 2017, 74(5): 557–566. doi: 10.1001/jamaneurol.2016.6117
|
[92] |
Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease[J]. Nat Med, 2019, 25(2): 277–283. doi: 10.1038/s41591-018-0304-3
|
[93] |
Krishnamoorthy G, Saxena A, Mars LT, et al. Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis[J]. Nat Med, 2009, 15(6): 626–632. doi: 10.1038/nm.1975
|
[94] |
McQuillan K, Lynch MA, Mills KHG. Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells[J]. Brain Behav Immun, 2010, 24(4): 598–607. doi: 10.1016/j.bbi.2010.01.003
|
[95] |
Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2[J]. J Exp Med, 2005, 201(4): 647–657. doi: 10.1084/jem.20041611
|
[96] |
Gaikwad S, Larionov S, Wang Y, et al. Signal regulatory protein-β1: a microglial modulator of phagocytosis in Alzheimer's disease[J]. Am J Pathol, 2009, 175(6): 2528–2539. doi: 10.2353/ajpath.2009.090147
|
[97] |
Obregon D, Hou H, Bai Y, et al. CD40L disruption enhances Aβ vaccine-mediated reduction of cerebral amyloidosis while minimizing cerebral amyloid angiopathy and inflammation[J]. Neurobiol Dis, 2008, 29(2): 336–353. doi: 10.1016/j.nbd.2007.09.009
|
[98] |
Le Blon D, Guglielmetti C, Hoornaert C, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model[J]. J Neuroinflammation, 2016, 13(1): 288. doi: 10.1186/s12974-016-0756-7
|
[99] |
Guarda G, Dostert C, Staehli F, et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes[J]. Nature, 2009, 460(7252): 269–273. doi: 10.1038/nature08100
|
[100] |
Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype[J]. J Immunol, 2008, 180(6): 3866–3873. doi: 10.4049/jimmunol.180.6.3866
|
[101] |
Beurel E, Harrington LE, Buchser W, et al. Astrocytes modulate the polarization of CD4+ T cells to Th1 cells[J]. PLoS One, 2014, 9(1): e86257. doi: 10.1371/journal.pone.0086257
|
[102] |
Xie L, Choudhury GR, Winters A, et al. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10[J]. Eur J Immunol, 2015, 45(1): 180–191. doi: 10.1002/eji.201444823
|
[103] |
Dombrowski Y, O'Hagan T, Dittmer M, et al. Regulatory T cells promote myelin regeneration in the central nervous system[J]. Nat Neurosci, 2017, 20(5): 674–680. doi: 10.1038/nn.4528
|
[104] |
Aloisi F, De Simone R, Columba-Cabezas S, et al. Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells[J]. J Immunol, 2000, 164(4): 1705–1712. doi: 10.4049/jimmunol.164.4.1705
|
[105] |
Das Sarma J, Ciric B, Marek R, et al. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis[J]. J Neuroinflammation, 2009, 6: 14. doi: 10.1186/1742-2094-6-14
|
[106] |
Rock RB, Hu S, Deshpande A, et al. Transcriptional response of human microglial cells to interferon-γ[J]. Genes Immun, 2005, 6(8): 712–719. doi: 10.1038/sj.gene.6364246
|
[107] |
Togo T, Akiyama H, Kondo H, et al. Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases[J]. Brain Res, 2000, 885(1): 117–121. doi: 10.1016/S0006-8993(00)02984-X
|
[108] |
Townsend KP, Town T, Mori T, et al. CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid β-peptide[J]. Eur J Immunol, 2005, 35(3): 901–910. doi: 10.1002/eji.200425585
|
[109] |
McManus RM, Mills KHG, Lynch MA. T cells-protective or pathogenic in Alzheimer's disease?[J]. J Neuroimmune Pharmacol, 2015, 10(4): 547–560. doi: 10.1007/s11481-015-9612-2
|
[110] |
Zeinstra E, Wilczak N, De Keyser J. Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7–1 and B7–2[J]. J Neuroimmunol, 2003, 135(1-2): 166–171. doi: 10.1016/S0165-5728(02)00462-9
|
[111] |
Yang J, Kou J, Lalonde R, et al. Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer's disease[J]. Brain Behav Immun, 2017, 65: 262–273. doi: 10.1016/j.bbi.2017.05.012
|
[112] |
Weiss R, Lifshitz V, Frenkel D. TGF-β1 affects endothelial cell interaction with macrophages and T cells leading to the development of cerebrovascular amyloidosis[J]. Brain Behav Immun, 2011, 25(5): 1017–1024. doi: 10.1016/j.bbi.2010.11.012
|
[113] |
Man S, Ma Y, Shang D, et al. Peripheral T cells overexpress MIP-1α to enhance its transendothelial migration in Alzheimer's disease[J]. Neurobiol Aging, 2007, 28(4): 485–496. doi: 10.1016/j.neurobiolaging.2006.02.013
|
[114] |
Pietronigro E, Zenaro E, Bianca VD, et al. Blockade of α4 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer's disease[J]. Sci Rep, 2019, 9(1): 12055. doi: 10.1038/s41598-019-48538-x
|
[115] |
Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease[J]. Nat Genet, 2010, 42(9): 781–785. doi: 10.1038/ng.642
|
[116] |
Fuller JP, Stavenhagen JB, Teeling JL. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease[J]. Front Neurosci, 2014, 8: 235. doi: 10.3389/fnins.2014.00235
|
[117] |
Piazza F, Greenberg SM, Savoiardo M, et al. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies[J]. Ann Neurol, 2013, 73(4): 449–458. doi: 10.1002/ana.23857
|
[118] |
Sollvander S, Ekholm-Pettersson F, Brundin RM, et al. Increased number of plasma B cells producing autoantibodies against Aβ42 protofibrils in Alzheimer's disease[J]. J Alzheimers Dis, 2015, 48(1): 63–72. doi: 10.3233/JAD-150236
|
[119] |
Maftei M, Thurm F, Schnack C, et al. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer's disease patients[J]. PLoS One, 2013, 8(7): e68996. doi: 10.1371/journal.pone.0068996
|
[120] |
Mimouni D, Gdalevich M, Mimouni FB, et al. Does immune serum globulin confer protection against skin diseases?[J]. Int J Dermatol, 2000, 39(8): 628–631. doi: 10.1046/j.1365-4362.2000.00983.x
|
[121] |
Bruhns P, Samuelsson A, Pollard JW, et al. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease[J]. Immunity, 2003, 18(4): 573–581. doi: 10.1016/S1074-7613(03)00080-3
|
[122] |
Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells[J]. Nat Med, 2006, 12(6): 688–692. doi: 10.1038/nm1416
|
[123] |
Marsh SE, Abud EM, Lakatos A, et al. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function[J]. Proc Natl Acad Sci U S A, 2016, 113(9): E1316–E1325. doi: 10.1073/pnas.1525466113
|
[124] |
Cribbs DH, Berchtold NC, Perreau V, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study[J]. J Neuroinflammation, 2012, 9: 179. doi: 10.1186/1742-2094-9-179
|
[125] |
Prüss H, Höltje M, Maier N, et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment[J]. Neurology, 2012, 78(22): 1743–1753. doi: 10.1212/WNL.0b013e318258300d
|
[126] |
Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic[J]. Annu Rev Immunol, 2006, 24: 467–496. doi: 10.1146/annurev.immunol.24.021605.090517
|
[127] |
Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes[J]. Annu Rev Immunol, 1990, 8: 773–793. doi: 10.1146/annurev.iy.08.040190.004013
|
[128] |
Avalos AM, Ploegh HL. Early BCR events and antigen capture, processing, and loading on MHC class II on B cells[J]. Front Immunol, 2014, 5: 92. doi: 10.3389/fimmu.2014.00092
|
[129] |
Sonoda KH, Stein-Streilein J. CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance[J]. Eur J Immunol, 2002, 32(3): 848–857. doi: 10.1002/1521-4141(200203)32:3<848::AID-IMMU848>3.0.CO;2-I
|
[130] |
Tomihara K, Shin T, Hurez VJ, et al. Aging-associated B7-DC+ B cells enhance anti-tumor immunity via Th1 and Th17 induction[J]. Aging Cell, 2012, 11(1): 128–138. doi: 10.1111/j.1474-9726.2011.00764.x
|
[131] |
Xiong L, Xue L, Du R, et al. Single-cell RNA sequencing reveals B cell-related molecular biomarkers for Alzheimer's disease[J]. Exp Mol Med, 2021, 53(12): 1888–1901. doi: 10.1038/s12276-021-00714-8
|
[132] |
Kim K, Wang X, Ragonnaud E, et al. Therapeutic B-cell depletion reverses progression of Alzheimer's disease[J]. Nat Commun, 2021, 12(1): 2185. doi: 10.1038/s41467-021-22479-4
|
[133] |
Weber MS, Prod'Homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity[J]. Ann Neurol, 2010, 68(3): 369–383. doi: 10.1002/ana.22081
|
[134] |
Pierson ER, Stromnes IM, Goverman JM. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system[J]. J Immunol, 2014, 192(3): 929–939. doi: 10.4049/jimmunol.1302171
|
[135] |
Desmond DW, Moroney JT, Sano M, et al. Incidence of dementia after ischemic stroke: results of a longitudinal study[J]. Stroke, 2002, 33(9): 2254–2262. doi: 10.1161/01.STR.0000028235.91778.95
|
[136] |
Mena H, Cadavid D, Rushing EJ. Human cerebral infarct: a proposed histopathologic classification based on 137 cases[J]. Acta Neuropathol, 2004, 108(6): 524–530. doi: 10.1007/s00401-004-0918-z
|
[137] |
Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function[J]. Immunity, 2015, 42(4): 607–612. doi: 10.1016/j.immuni.2015.04.005
|
[138] |
Olkhanud PB, Damdinsuren B, Bodogai M, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells[J]. Cancer Res, 2011, 71(10): 3505–3515. doi: 10.1158/0008-5472.CAN-10-4316
|
[139] |
Minter MR, Main BS, Brody KM, et al. Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro[J]. J Neuroinflammation, 2015, 12: 71. doi: 10.1186/s12974-015-0263-2
|
[140] |
Bodogai M, Moritoh K, Lee-Chang C, et al. Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells[J]. Cancer Res, 2015, 75(17): 3456–3465. doi: 10.1158/0008-5472.CAN-14-3077
|
[141] |
Sun J, Flach CF, Czerkinsky C, et al. B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit[J]. J Immunol, 2008, 181(12): 8278–8287. doi: 10.4049/jimmunol.181.12.8278
|
[142] |
Shen P, Roch T, Lampropoulou V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases[J]. Nature, 2014, 507(7492): 366–370. doi: 10.1038/nature12979
|
[143] |
Matsushita T, Yanaba K, Bouaziz JD, et al. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression[J]. J Clin Invest, 2008, 118(10): 3420–3430. doi: 10.1172/JCI36030
|
[144] |
Collison LW, Chaturvedi V, Henderson AL, et al. IL-35-mediated induction of a potent regulatory T cell population[J]. Nat Immunol, 2010, 11(12): 1093–1101. doi: 10.1038/ni.1952
|
[145] |
Kurnellas MP, Ghosn EEB, Schartner JM, et al. Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease[J]. Proc Natl Acad Sci U S A, 2015, 112(49): 15016–15023. doi: 10.1073/pnas.1521206112
|
[146] |
Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization[J]. Neurology, 2003, 61(1): 46–54. doi: 10.1212/01.WNL.0000073623.84147.A8
|
[147] |
Nicoll JAR, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report[J]. Nat Med, 2003, 9(4): 448–452. doi: 10.1038/nm840
|
[148] |
Saresella M, Calabrese E, Marventano I, et al. A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer's disease[J]. Neurobiol Aging, 2012, 33(3): 624.e11–624.e22. doi: 10.1016/j.neurobiolaging.2011.03.004
|
[149] |
Baruch K, Deczkowska A, Rosenzweig N, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease[J]. Nat Med, 2016, 22(2): 135–137. doi: 10.1038/nm.4022
|
[150] |
Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model[J]. Nat Commun, 2019, 10(1): 465. doi: 10.1038/s41467-019-08352-5
|