• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 3
May  2021
Turn off MathJax
Article Contents
Zhi Liu, Jianwei Wang, Yiyue Ge, Yuyu Xu, Mengchen Guo, Kai Mi, Rui Xu, Yang Pei, Qiankun Zhang, Xiaoting Luan, Zhibin Hu, Ying Chi, Xingyin Liu. SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response[J]. The Journal of Biomedical Research, 2021, 35(3): 216-227. doi: 10.7555/JBR.35.20200154
Citation: Zhi Liu, Jianwei Wang, Yiyue Ge, Yuyu Xu, Mengchen Guo, Kai Mi, Rui Xu, Yang Pei, Qiankun Zhang, Xiaoting Luan, Zhibin Hu, Ying Chi, Xingyin Liu. SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response[J]. The Journal of Biomedical Research, 2021, 35(3): 216-227. doi: 10.7555/JBR.35.20200154

SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response

doi: 10.7555/JBR.35.20200154
More Information
  • Corresponding author: Ying Chi, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, 172 Jiangsu Road, Gulou District, Nanjing, Jiangsu 210009, China. Tel: +86-25-83759424, E-mail: chiying@jscdc.cn; Xingyin Liu, Department of Pathogen Biology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869397, E-mail: xingyinliu@njmu.edu.cn
  • Received: 2020-09-10
  • Revised: 2020-12-07
  • Accepted: 2020-12-25
  • Published: 2021-01-29
  • Issue Date: 2021-05-28
  • The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide, with the pathogenesis mostly unclear. Both virus and host-derived microRNA (miRNA) play essential roles in the pathology of virus infection. This study aims to uncover the mechanism for SARS-CoV-2 pathogenicity from the perspective of miRNA. We scanned the SARS-CoV-2 genome for putative miRNA genes and miRNA targets and conducted in vivo experiments to validate the virus-encoded miRNAs and their regulatory role on the putative targets. One of such virus-encoded miRNAs, MR147-3p, was overexpressed that resulted in significantly decreased transcript levels of all of the predicted targets in human, i.e., EXOC7, RAD9A, and TFE3 in the virus-infected cells. The analysis showed that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs. Additionally, the genomic mutation of SARS-CoV-2 contributed to the changed miRNA repository and targets, suggesting a possible role of miRNAs in the attenuated phenotype of SARS-CoV-2 during its evolution. This study provided a comprehensive view of the miRNA-involved regulatory system during SARS-CoV-2 infection, indicating possible antiviral therapeutics against SARS-CoV-2 through intervening miRNA regulation.


  • loading
  • [1]
    Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern[J]. Lancet, 2020, 395(10223): 470–473. doi: 10.1016/S0140-6736(20)30185-9
    Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798): 265–269. doi: 10.1038/s41586-020-2008-3
    Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271–280.e8. doi: 10.1016/j.cell.2020.02.052
    Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
    Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges[J]. Lancet Gastroenterol Hepatol, 2020, 5(5): 428–430. doi: 10.1016/S2468-1253(20)30057-1
    Feng ZQ, Diao B, Wang RS, et al. The novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) directly decimates human spleens and lymph nodes[EB/OL].[2020-03-31]. https://www.medrxiv.org/content/10.1101/2020.03.27.20045427v1.
    Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507–513. doi: 10.1016/S0140-6736(20)30211-7
    Xiao M, Li J, Li W, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger[J]. RNA Biol, 2017, 14(10): 1326–1334. doi: 10.1080/15476286.2015.1112487
    Ramchandran R, Chaluvally-Raghavan P. miRNA-mediated RNA activation in mammalian cells[M]//Li LC. RNA Activation. Singapore: Springer, 2017: 81-89.
    Bandiera S, Pfeffer S, Baumert TF, et al. miR-122-A key factor and therapeutic target in liver disease[J]. J Hepatol, 2015, 62(2): 448–457. doi: 10.1016/j.jhep.2014.10.004
    Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future[J]. PLoS Pathog, 2012, 8(12): e1003018. doi: 10.1371/journal.ppat.1003018
    Li XH, Zou XP. An overview of RNA virus-encoded microRNAs[J]. ExRNA, 2019, 1(1): 37. doi: 10.1186/s41544-019-0037-6
    Guo X, Huang YJ, Qi Y, et al. Human cytomegalovirus miR-UL36-5p inhibits apoptosis via downregulation of adenine nucleotide translocator 3 in cultured cells[J]. Arch Virol, 2015, 160(10): 2483–2490. doi: 10.1007/s00705-015-2498-8
    Li XH, Fu Z, Liang HW, et al. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2[J]. Cell Res, 2018, 28(2): 157–171. doi: 10.1038/cr.2018.3
    Barth S, Pfuhl T, Mamiani A, et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5[J]. Nucleic Acids Res, 2008, 36(2): 666–675. doi: 10.1093/nar/gkm1080
    Marcinowski L, Tanguy M, Krmpotic A, et al. Degradation of cellular miR-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo[J]. PLoS Pathog, 2012, 8(2): e1002510. doi: 10.1371/journal.ppat.1002510
    Trobaugh DW, Gardner CL, Sun CQ, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity[J]. Nature, 2014, 506(7487): 245–248. doi: 10.1038/nature12869
    Tahamtan A, Inchley CS, Marzban M, et al. The role of microRNAs in respiratory viral infection: friend or foe?[J]. Rev Med Virol, 2016, 26(6): 389–407. doi: 10.1002/rmv.1894
    Bernier A, Sagan SM. The diverse roles of microRNAs at the host-virus interface[J]. Viruses, 2018, 10(8): 440. doi: 10.3390/v10080440
    Grundhoff A. Computational prediction of viral miRNAs[M]//van Rij RP. Antiviral RNAi: Concepts, Methods, and Applications. New York: Humana Press, 2011: 143-152.
    Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA Websuite[J]. Nucleic Acids Res, 2008, 36(S1): W70–W74. doi: 10.1093/nar/gkn188
    Gudyś A, Szcześniak MW, Sikora M, et al. HuntMi: an efficient and taxon-specific approach in pre-miRNA identification[J]. BMC Bioinformatics, 2013, 14(1): 83. doi: 10.1186/1471-2105-14-83
    Gkirtzou K, Tsamardinos I, Tsakalides P, et al. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors[J]. PLoS One, 2010, 5(8): e11843. doi: 10.1371/journal.pone.0011843
    Mignone F, Grillo G, Licciulli F, et al. UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs[J]. Nucleic Acids Res, 2005, 33(S1): D141–D146. doi: 10.1093/nar/gki021
    Gao TS, Qian J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species[J]. Nucleic Acids Res, 2020, 48(D1): D58–D64. doi: 10.1093/nar/gkz980
    Fahlgren N, Carrington JC. miRNA target prediction in plants[M]//Meyers BC, Green PJ. Plant MicroRNAs: Methods and Protocols. New York: Humana Press, 2010: 51-57.
    John B, Enright AJ, Aravin A, et al. Human MicroRNA targets[J]. PLoS Biol, 2004, 2(11): e363. doi: 10.1371/journal.pbio.0020363
    Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. eLife, 2015, 4: e05005. doi: 10.7554/eLife.05005
    Hu YJ, Wang LQ, Gu JX, et al. Identification of microRNA differentially expressed in three subtypes of non-small cell lung cancer and in silico functional analysis[J]. Oncotarget, 2017, 8(43): 74554–74566. doi: 10.18632/oncotarget.20218
    Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association[J]. Bioinformatics, 2007, 23(2): 257–257. doi: 10.1093/bioinformatics/btl567
    Kvansakul M. Viral infection and apoptosis[J]. Viruses, 2017, 9(12): 356. doi: 10.3390/v9120356
    Nichols DB, De Martini W, Cottrell J. Poxviruses utilize multiple strategies to inhibit apoptosis[J]. Viruses, 2017, 9(8): 215. doi: 10.3390/v9080215
    Komatsu K, Miyashita T, Hang HY, et al. Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis[J]. Nat Cell Biol, 2000, 2(1): 1–6. doi: 10.1038/71316
    Zhang KB, Li L, Qi YJ, et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice[J]. Endocrinology, 2012, 153(2): 631–646. doi: 10.1210/en.2011-1527
    Raman C, Ren C, Boas S, et al. TCR signaling strength dependent regulation of T cell proliferation, survival and Th differentiation by TGF-βR3 (betaglycan)[J]. J Immunol, 2017, 198(S1): 201.8. https://www.jimmunol.org/content/198/1_Supplement/201.8
    Venkateswaran A, Sekhar KR, Levic DS, et al. The NADH oxidase ENOX1, a critical mediator of endothelial cell radiosensitization, is crucial for vascular development[J]. Cancer Res, 2014, 74(1): 38–43. doi: 10.1158/0008-5472.CAN-13-1981
    Zhang N, Huang HJ, Tan BH, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein[J]. J Biol Chem, 2017, 292(40): 16527–16538. doi: 10.1074/jbc.M117.802090
    Sodhi A, Montaner S, Gutkind JS. Viral hijacking of G-protein-coupled-receptor signalling networks[J]. Nat Rev Mol Cell Biol, 2004, 5(12): 998–1012. doi: 10.1038/nrm1529
    Cheng H, Lear-Rooney CM, Johansen L, et al. Inhibition of Ebola and Marburg virus entry by G protein-coupled receptor antagonists[J]. J Virol, 2015, 89(19): 9932–9938. doi: 10.1128/JVI.01337-15
    Lira M, Arancibia D, Orrego PR, et al. The Exocyst component Exo70 modulates dendrite arbor formation, synapse density, and spine maturation in primary hippocampal neurons[J]. Mol Neurobiol, 2019, 56(7): 4620–4638. doi: 10.1007/s12035-018-1378-0
    Pastore N, Vainshtein A, Klisch TJ, et al. TFE3 regulates whole‐body energy metabolism in cooperation with TFEB[J]. EMBO Mol Med, 2017, 9(5): 605–621. doi: 10.15252/emmm.201607204
    Testa U, Pelosi E, Castelli G, et al. miR-146 and miR-155: two key modulators of immune response and tumor development[J]. Non-Coding RNA, 2017, 3(3): 22. doi: 10.3390/ncrna3030022
    McDonald MK, Ramanathan S, Touati A, et al. Regulation of proinflammatory genes by the circulating microRNA hsa-miR-939[J]. Sci Rep, 2016, 6(1): 30976. doi: 10.1038/srep30976
    Holland LA, Kaelin EA, Maqsood R, et al. An 81-nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (January to March 2020)[J]. J Virol, 2020, 94(14): e00711–20. doi: 10.1128/JVI.00711-20
    Perwitasari O, Johnson S, Yan XZ, et al. Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo[J]. J Virol, 2014, 88(17): 10228–10243. doi: 10.1128/JVI.01774-14
  • JBR-2020-0154-supplementary.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (158) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint