• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Sun Meihen, Han Xu, Chang Fei, Xu Hongfei, Colgan Lesley, Liu Yongjian. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells[J]. The Journal of Biomedical Research, 2021, 35(5): 339-350. doi: 10.7555/JBR.34.20200095
Citation: Sun Meihen, Han Xu, Chang Fei, Xu Hongfei, Colgan Lesley, Liu Yongjian. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells[J]. The Journal of Biomedical Research, 2021, 35(5): 339-350. doi: 10.7555/JBR.34.20200095

Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells

doi: 10.7555/JBR.34.20200095
More Information
  • Corresponding author: Yongjian Liu, Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869442, E-mail: young.liu78@gmail.com; Lesley Colgan, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA. Tel: +1-561-972-9210, E-mail: lesley.col gan@nufi.org
  • Received: 2020-06-17
  • Revised: 2020-06-19
  • Accepted: 2020-06-19
  • Published: 2020-08-21
  • Issue Date: 2021-09-27
  • Accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs) is indispensable for efficient cholinergic transmission. Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs. However, the cytosolic machinery underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear. Here we used the C-terminus of VAChT as a bait in a yeast two-hybrid screen to identify sorting nexin 5 (SNX5) as its novel interacting protein. SNX5 was detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and showed strong colocalization with VAChT in both brain sections and PC12 cells. Binding assays suggested that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5. Depletion of SNX5 enhanced the degradation of VAChT and the process was mediated through the lysosomal pathway. More importantly, we found that, in PC12 cells, the depletion of SNX5 expression significantly decreased the synaptic vesicle-like vesicles (SVLVs) localization of VAChT. Therefore, the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT.


  • △ These authors contributed equally to this work
  • loading
  • [1]
    Roghani A, Feldman J, Kohan SA, et al. Molecular cloning of a putative vesicular transporter for acetylcholine[J]. Proc Natl Acad Sci, U S A, 1994, 91(22): 10620–10624. doi: 10.1073/pnas.91.22.10620
    Song HJ, Ming GL, Fon E, et al. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging[J]. Neuron, 1997, 18(5): 815–826. doi: 10.1016/S0896-6273(00)80320-7
    Liu YJ, Krantz DE, Waites C, et al. Membrane trafficking of neurotransmitter transporters in the regulation of synaptic transmission[J]. Trends Cell Biol, 1999, 9(9): 356–363. doi: 10.1016/S0962-8924(99)01605-0
    Tan PK, Waites C, Liu YJ, et al. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters[J]. J Biol Chem, 1998, 273(28): 17351–17360. doi: 10.1074/jbc.273.28.17351
    Colgan L, Liu H, Huang SY, et al. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter[J]. Traffic, 2007, 8(5): 512–522. doi: 10.1111/j.1600-0854.2007.00555.x
    Barbosa Jr J, Ferreira LT, Martins-Silva C, et al. Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex[J]. J Neurochem, 2002, 82(5): 1221–1228.
    Voglmaier SM, Kam K, Yang H, et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling[J]. Neuron, 2006, 51(1): 71–84. doi: 10.1016/j.neuron.2006.05.027
    Saheki Y, De Camilli P. Synaptic vesicle endocytosis[J]. Cold Spring Harb Perspect Biol, 2012, 4(9): a005645.
    Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles[J]. J Biol Chem, 2012, 287(42): 35658–35668. doi: 10.1074/jbc.M112.398883
    Nakata T, Terada S, Hirokawa N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons[J]. J Cell Biol, 1998, 140(3): 659–674. doi: 10.1083/jcb.140.3.659
    Stewart RS, Teng HB, Wilkinson RS. "Late" macroendosomes and acidic endosomes in vertebrate motor nerve terminals[J]. J Comp Neurol, 2012, 520(18): 4275–4293. doi: 10.1002/cne.23176
    Kim JY, Choi BK, Choi MG, et al. Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs[J]. EMBO J, 2012, 31(9): 2144–2155. doi: 10.1038/emboj.2012.57
    Kim MH, Hersh LB. The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2[J]. J Biol Chem, 2004, 279(13): 12580–12587. doi: 10.1074/jbc.M310681200
    Haberman A, Williamson WR, Epstein D, et al. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration[J]. J Cell Biol, 2012, 196(2): 261–276. doi: 10.1083/jcb.201108088
    Fewou SN, Plomp JJ, Willison HJ. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies[J]. J Anat, 2014, 224(1): 36–44. doi: 10.1111/joa.12088
    Koo SJ, Markovic S, Puchkov D, et al. SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses[J]. Proc Natl Acad Sci U S A, 2011, 108(33): 13540–13545. doi: 10.1073/pnas.1107067108
    Goh GY, Huang H, Ullman J, et al. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport[J]. Nat Neurosci, 2011, 14(10): 1285–1292. doi: 10.1038/nn.2898
    Liu H, Liu ZQ, Chen CXQ, et al. Inhibitory regulation of EGF receptor degradation by sorting nexin 5[J]. Biochem Biophys Res Commun, 2006, 342(2): 537–546. doi: 10.1016/j.bbrc.2006.01.179
    Bonifacino JS, Hurley JH. Retromer[J]. Curr Opin Cell Biol, 2008, 20(4): 427–436. doi: 10.1016/j.ceb.2008.03.009
    Seet LF, Hong WJ. The Phox (PX) domain proteins and membrane traffic[J]. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids, 2006, 1761(8): 878–896. doi: 10.1016/j.bbalip.2006.04.011
    Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle[J]. Cell, 2006, 127(4): 831–846. doi: 10.1016/j.cell.2006.10.030
    Jung N, Wienisch M, Gu MY, et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2[J]. J Cell Biol, 2007, 179(7): 1497–1510. doi: 10.1083/jcb.200708107
    Palfrey HC, Artalejo CR. Vesicle recycling revisited: rapid endocytosis may be the first step[J]. Neuroscience, 1998, 83(4): 969–989. doi: 10.1016/S0306-4522(97)00453-3
    Svingos AL, Colago EEO, Pickel VM. Vesicular acetylcholine transporter in the rat nucleus accumbens shell: subcellular distribution and association with μ-opioid receptors[J]. Synapse, 2001, 40(3): 184–192. doi: 10.1002/syn.1041
    Krantz DE, Waites C, Oorschot V, et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles[J]. J Cell Biol, 2000, 149(2): 379–396. doi: 10.1083/jcb.149.2.379
    Seaman MNJ. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer[J]. J Cell Biol, 2004, 165(1): 111–122. doi: 10.1083/jcb.200312034
    McGough IJ, Cullen PJ. Recent advances in retromer biology[J]. Traffic, 2011, 12(8): 963–971. doi: 10.1111/j.1600-0854.2011.01201.x
    Seaman MNJ. The retromer complex - endosomal protein recycling and beyond[J]. J Cell Sci, 2012, 125(20): 4693–4702. doi: 10.1242/jcs.103440
    Griffin CT, Trejo J, Magnuson T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2[J]. Proc Natl Acad Sci U S A, 2005, 102(42): 15173–15177. doi: 10.1073/pnas.0409558102
    Oosawa H, Fujii T, Kawashima K. Nerve growth factor increases the synthesis and release of acetylcholine and the expression of vesicular acetylcholine transporter in primary cultured rat embryonic septal cells[J]. J Neurosci Res, 1999, 57(3): 381–387. doi: 10.1002/(SICI)1097-4547(19990801)57:3<381::AID-JNR10>3.0.CO;2-C
    Hall DD, Dai SP, Tseng PY, et al. Competition between α-actinin and Ca2+-calmodulin controls surface retention of the L-type Ca2+ channel CaV1.2[J]. Neuron, 2013, 78(3): 483–497. doi: 10.1016/j.neuron.2013.02.032
    Wang W, Bouhours M, Gracheva EO, et al. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1[J]. Traffic, 2008, 9(5): 742–754. doi: 10.1111/j.1600-0854.2008.00712.x
    Mohrmann R, Matthies HJ, Woodruff Ⅲ E, et al. Stoned B mediates sorting of integral synaptic vesicle proteins[J]. Neuroscience, 2008, 153(4): 1048–1063. doi: 10.1016/j.neuroscience.2008.02.060
    De Rubeis S, Pasciuto E, Li KW, et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation[J]. Neuron, 2013, 79(6): 1169–1182. doi: 10.1016/j.neuron.2013.06.039
    Poon WW, Carlos AJ, Aguilar BL, et al. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1[J]. J Biol Chem, 2013, 288(23): 16937–16948. doi: 10.1074/jbc.M113.463711
    Palaniyappan L, Simmonite M, White TP, et al. Neural primacy of the salience processing system in schizophrenia[J]. Neuron, 2013, 79(4): 814–828. doi: 10.1016/j.neuron.2013.06.027
    Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis[J]. J Neurosci, 2013, 33(6): 2605–2615. doi: 10.1523/JNEUROSCI.2898-12.2013
    Parks WT, Frank DB, Huff C, et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-β family of receptor serine-threonine kinases[J]. J Biol Chem, 2001, 276(22): 19332–19339. doi: 10.1074/jbc.M100606200
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (2481) PDF downloads(72) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint