Citation: | Sun Meihen, Han Xu, Chang Fei, Xu Hongfei, Colgan Lesley, Liu Yongjian. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells[J]. The Journal of Biomedical Research, 2021, 35(5): 339-350. DOI: 10.7555/JBR.34.20200095 |
△ These authors contributed equally to this work
[1] |
Roghani A, Feldman J, Kohan SA, et al. Molecular cloning of a putative vesicular transporter for acetylcholine[J]. Proc Natl Acad Sci, U S A, 1994, 91(22): 10620–10624. doi: 10.1073/pnas.91.22.10620
|
[2] |
Song HJ, Ming GL, Fon E, et al. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging[J]. Neuron, 1997, 18(5): 815–826. doi: 10.1016/S0896-6273(00)80320-7
|
[3] |
Liu YJ, Krantz DE, Waites C, et al. Membrane trafficking of neurotransmitter transporters in the regulation of synaptic transmission[J]. Trends Cell Biol, 1999, 9(9): 356–363. doi: 10.1016/S0962-8924(99)01605-0
|
[4] |
Tan PK, Waites C, Liu YJ, et al. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters[J]. J Biol Chem, 1998, 273(28): 17351–17360. doi: 10.1074/jbc.273.28.17351
|
[5] |
Colgan L, Liu H, Huang SY, et al. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter[J]. Traffic, 2007, 8(5): 512–522. doi: 10.1111/j.1600-0854.2007.00555.x
|
[6] |
Barbosa Jr J, Ferreira LT, Martins-Silva C, et al. Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex[J]. J Neurochem, 2002, 82(5): 1221–1228.
|
[7] |
Voglmaier SM, Kam K, Yang H, et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling[J]. Neuron, 2006, 51(1): 71–84. doi: 10.1016/j.neuron.2006.05.027
|
[8] |
Saheki Y, De Camilli P. Synaptic vesicle endocytosis[J]. Cold Spring Harb Perspect Biol, 2012, 4(9): a005645.
|
[9] |
Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles[J]. J Biol Chem, 2012, 287(42): 35658–35668. doi: 10.1074/jbc.M112.398883
|
[10] |
Nakata T, Terada S, Hirokawa N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons[J]. J Cell Biol, 1998, 140(3): 659–674. doi: 10.1083/jcb.140.3.659
|
[11] |
Stewart RS, Teng HB, Wilkinson RS. "Late" macroendosomes and acidic endosomes in vertebrate motor nerve terminals[J]. J Comp Neurol, 2012, 520(18): 4275–4293. doi: 10.1002/cne.23176
|
[12] |
Kim JY, Choi BK, Choi MG, et al. Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs[J]. EMBO J, 2012, 31(9): 2144–2155. doi: 10.1038/emboj.2012.57
|
[13] |
Kim MH, Hersh LB. The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2[J]. J Biol Chem, 2004, 279(13): 12580–12587. doi: 10.1074/jbc.M310681200
|
[14] |
Haberman A, Williamson WR, Epstein D, et al. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration[J]. J Cell Biol, 2012, 196(2): 261–276. doi: 10.1083/jcb.201108088
|
[15] |
Fewou SN, Plomp JJ, Willison HJ. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies[J]. J Anat, 2014, 224(1): 36–44. doi: 10.1111/joa.12088
|
[16] |
Koo SJ, Markovic S, Puchkov D, et al. SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses[J]. Proc Natl Acad Sci U S A, 2011, 108(33): 13540–13545. doi: 10.1073/pnas.1107067108
|
[17] |
Goh GY, Huang H, Ullman J, et al. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport[J]. Nat Neurosci, 2011, 14(10): 1285–1292. doi: 10.1038/nn.2898
|
[18] |
Liu H, Liu ZQ, Chen CXQ, et al. Inhibitory regulation of EGF receptor degradation by sorting nexin 5[J]. Biochem Biophys Res Commun, 2006, 342(2): 537–546. doi: 10.1016/j.bbrc.2006.01.179
|
[19] |
Bonifacino JS, Hurley JH. Retromer[J]. Curr Opin Cell Biol, 2008, 20(4): 427–436. doi: 10.1016/j.ceb.2008.03.009
|
[20] |
Seet LF, Hong WJ. The Phox (PX) domain proteins and membrane traffic[J]. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids, 2006, 1761(8): 878–896. doi: 10.1016/j.bbalip.2006.04.011
|
[21] |
Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle[J]. Cell, 2006, 127(4): 831–846. doi: 10.1016/j.cell.2006.10.030
|
[22] |
Jung N, Wienisch M, Gu MY, et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2[J]. J Cell Biol, 2007, 179(7): 1497–1510. doi: 10.1083/jcb.200708107
|
[23] |
Palfrey HC, Artalejo CR. Vesicle recycling revisited: rapid endocytosis may be the first step[J]. Neuroscience, 1998, 83(4): 969–989. doi: 10.1016/S0306-4522(97)00453-3
|
[24] |
Svingos AL, Colago EEO, Pickel VM. Vesicular acetylcholine transporter in the rat nucleus accumbens shell: subcellular distribution and association with μ-opioid receptors[J]. Synapse, 2001, 40(3): 184–192. doi: 10.1002/syn.1041
|
[25] |
Krantz DE, Waites C, Oorschot V, et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles[J]. J Cell Biol, 2000, 149(2): 379–396. doi: 10.1083/jcb.149.2.379
|
[26] |
Seaman MNJ. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer[J]. J Cell Biol, 2004, 165(1): 111–122. doi: 10.1083/jcb.200312034
|
[27] |
McGough IJ, Cullen PJ. Recent advances in retromer biology[J]. Traffic, 2011, 12(8): 963–971. doi: 10.1111/j.1600-0854.2011.01201.x
|
[28] |
Seaman MNJ. The retromer complex - endosomal protein recycling and beyond[J]. J Cell Sci, 2012, 125(20): 4693–4702. doi: 10.1242/jcs.103440
|
[29] |
Griffin CT, Trejo J, Magnuson T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2[J]. Proc Natl Acad Sci U S A, 2005, 102(42): 15173–15177. doi: 10.1073/pnas.0409558102
|
[30] |
Oosawa H, Fujii T, Kawashima K. Nerve growth factor increases the synthesis and release of acetylcholine and the expression of vesicular acetylcholine transporter in primary cultured rat embryonic septal cells[J]. J Neurosci Res, 1999, 57(3): 381–387. doi: 10.1002/(SICI)1097-4547(19990801)57:3<381::AID-JNR10>3.0.CO;2-C
|
[31] |
Hall DD, Dai SP, Tseng PY, et al. Competition between α-actinin and Ca2+-calmodulin controls surface retention of the L-type Ca2+ channel CaV1.2[J]. Neuron, 2013, 78(3): 483–497. doi: 10.1016/j.neuron.2013.02.032
|
[32] |
Wang W, Bouhours M, Gracheva EO, et al. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1[J]. Traffic, 2008, 9(5): 742–754. doi: 10.1111/j.1600-0854.2008.00712.x
|
[33] |
Mohrmann R, Matthies HJ, Woodruff Ⅲ E, et al. Stoned B mediates sorting of integral synaptic vesicle proteins[J]. Neuroscience, 2008, 153(4): 1048–1063. doi: 10.1016/j.neuroscience.2008.02.060
|
[34] |
De Rubeis S, Pasciuto E, Li KW, et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation[J]. Neuron, 2013, 79(6): 1169–1182. doi: 10.1016/j.neuron.2013.06.039
|
[35] |
Poon WW, Carlos AJ, Aguilar BL, et al. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1[J]. J Biol Chem, 2013, 288(23): 16937–16948. doi: 10.1074/jbc.M113.463711
|
[36] |
Palaniyappan L, Simmonite M, White TP, et al. Neural primacy of the salience processing system in schizophrenia[J]. Neuron, 2013, 79(4): 814–828. doi: 10.1016/j.neuron.2013.06.027
|
[37] |
Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis[J]. J Neurosci, 2013, 33(6): 2605–2615. doi: 10.1523/JNEUROSCI.2898-12.2013
|
[38] |
Parks WT, Frank DB, Huff C, et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-β family of receptor serine-threonine kinases[J]. J Biol Chem, 2001, 276(22): 19332–19339. doi: 10.1074/jbc.M100606200
|
[1] | Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040 |
[2] | Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091 |
[3] | Qiu Jinchun, Guo Hongli, Li Ling, Xu Zeyue, Xu Zejun, Jing Xia, Hu Yahui, Wen Xiaoyi, Chen Feng, Lu Xiaopeng. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy— a pilot longitudinal study[J]. The Journal of Biomedical Research, 2021, 35(1): 61-67. DOI: 10.7555/JBR.34.20200057 |
[4] | Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027 |
[5] | Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162 |
[6] | So-Hye Hong, Jae-Eon Lee, Hong Sung Kim, Young-Jin Jung, DaeYoun Hwang, Jae Ho Lee, Seung Yun Yang, Seung-Chul Kim, Seong-Keun Cho, Beum-Soo An. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes[J]. The Journal of Biomedical Research, 2016, 30(3): 203-208. DOI: 10.7555/JBR.30.2016K0012 |
[7] | Rezvan Hashemi, Sakineh Shab Bidar, Moloud Payab, Ramin Heshmat, Ahmad Reza Dorosti-Motlagh. Urgent need of vitamin D supplementation among Iranian elderly: a cross-sectional study[J]. The Journal of Biomedical Research, 2014, 28(6): 509-512. DOI: 10.7555/JBR.28.20140089 |
[8] | Nuan Wang, Xianming Chen, Deqin Geng, Hongli Huang, Hao Zhou. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia[J]. The Journal of Biomedical Research, 2013, 27(1): 29-36. DOI: 10.7555/JBR.27.20120047 |
[9] | Min Zhang, Yan Zhang, Shuaishuai Zhu, Xiaoyu Li, Qing Yang, Hui Bai, Qi Chen. Genetic variants of the class A scavenger receptor gene are associated with coronary artery disease in Chinese[J]. The Journal of Biomedical Research, 2012, 26(6): 418-424. DOI: 10.7555/JBR.26.20110116 |
[10] | Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106. |
1. | Boda VK, Yasmen N, Jiang J, et al. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev, 2024, 44(6): 2510-2544. DOI:10.1002/med.22048 |
2. | Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel), 2023, 15(20): 4920. DOI:10.3390/cancers15204920 |
3. | Zhou Y, Pereira G, Tang Y, et al. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics, 2023, 15(6): 1691. DOI:10.3390/pharmaceutics15061691 |
4. | Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist, 2022, 5(4): 850-872. DOI:10.20517/cdr.2022.20 |
5. | Gal O, Betzer O, Rousso-Noori L, et al. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. J Nanotheranostics, 2022, 3(4): 177-188. DOI:10.3390/jnt3040012 |
6. | Scioli MG, Terriaca S, Fiorelli E, et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci, 2021, 22(19): 10572. DOI:10.3390/ijms221910572 |
7. | Keyvani-Ghamsari S, Khorsandi K, Rasul A, et al. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics, 2021, 13(1): 120. DOI:10.1186/s13148-021-01107-4 |
8. | Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci, 2020, 6(3): 341. DOI:10.15761/jts.1000341 |
9. | Chandimali N, Koh H, Kim J, et al. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett, 2020, 20(4): 103. DOI:10.3892/ol.2020.11964 |
10. | Mukherjee S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep, 2020, 10(1): 10937. DOI:10.1038/s41598-020-67753-5 |
11. | Zhou JJ, Xiao Y, Li H, et al. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci, 2020, 17(6): 799-806. DOI:10.7150/ijms.43832 |
12. | Sun Z, Wang L, Zhou Y, et al. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol, 2020, 40(5): 767-784. DOI:10.1007/s10571-019-00771-8 |
13. | Zhang Q, Xu B, Chen J, et al. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal, 2020, 34(3): e23082. DOI:10.1002/jcla.23082 |
14. | Megías J, Martínez A, San-Miguel T, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs, 2020, 38(2): 299-310. DOI:10.1007/s10637-019-00788-2 |
15. | Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 139. DOI:10.1186/s13046-019-1134-y |
16. | Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med, 2018, 7(1): 33. DOI:10.1186/s40169-018-0211-8 |
17. | Grande S, Palma A, Ricci-Vitiani L, et al. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs. Stem Cells Int, 2018, 2018: 3292704. DOI:10.1155/2018/3292704 |
18. | Zuccarini M, Giuliani P, Ziberi S, et al. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2): 105. DOI:10.3390/genes9020105 |
19. | Bhere D, Tamura K, Wakimoto H, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol, 2018, 20(2): 215-224. DOI:10.1093/neuonc/nox138 |
20. | Lee S, Kwon MC, Jang JP, et al. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol, 2017, 51(2): 414-424. DOI:10.3892/ijo.2017.4054 |
21. | Jovčevska I, Zupanec N, Urlep Ž, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8(27): 44141-44158. DOI:10.18632/oncotarget.17390 |
22. | Hiramatsu H, Kobayashi K, Kobayashi K, et al. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep, 2017, 7(1): 889. DOI:10.1038/s41598-017-00982-3 |
23. | Zheng X, Pang B, Gu G, et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int J Biol Sci, 2017, 13(2): 245-253. DOI:10.7150/ijbs.16818 |
24. | Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg, 2017, 127(6): 1219-1230. DOI:10.3171/2016.8.JNS161197 |
25. | Majewska E, Szeliga M. AKT/GSK3β Signaling in Glioblastoma. Neurochem Res, 2017, 42(3): 918-924. DOI:10.1007/s11064-016-2044-4 |
26. | Kanabur P, Guo S, Simonds GR, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7(52): 86406-86419. DOI:10.18632/oncotarget.13415 |
27. | Wang K, Kievit FM, Erickson AE, et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater, 2016, 5(24): 3173-3181. DOI:10.1002/adhm.201600684 |