4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Slimen Itaf Ben, Boubchir Larbi, Mbarki Zouhair, Seddik Hassene. EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms[J]. The Journal of Biomedical Research, 2020, 34(3): 151-161. DOI: 10.7555/JBR.34.20190026
Citation: Slimen Itaf Ben, Boubchir Larbi, Mbarki Zouhair, Seddik Hassene. EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms[J]. The Journal of Biomedical Research, 2020, 34(3): 151-161. DOI: 10.7555/JBR.34.20190026

EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms

More Information
  • Corresponding author:

    Itaf Ben Slimen, Electric Engineering department, Centre de Recherche et de Production Research Lab., Ecole Nationale Supérieure des Ingénieurs de Tunis, University of Tunis, street Taha Hussein Montfleury, Tunis 1008, Tunisia. Tel: +216-27-542-572, E-mail: itafslimen@gmail.com

  • Received Date: February 14, 2019
  • Revised Date: November 29, 2019
  • Accepted Date: February 10, 2020
  • Available Online: April 23, 2020
  • The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography (EEG) is an oversensitive operation and prone to errors, which has motivated the researchers to develop effective automated seizure detection methods. This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases. The proposed method consists of three steps: (i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis (MSPCA), (ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition (EMD), discrete wavelet transform (DWT), and dual-tree complex wavelet transform (DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals, and (iii) allocate the feature vector to the relevant class (i.e., seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine (SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA). The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process. The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.
  • [1]
    Acharya UR, Sree SV, Swapna G, et al. Automated EEG analysis of epilepsy: a review[J]. Knowl-Based Syst, 2013, 45: 147–165. doi: 10.1016/j.knosys.2013.02.014
    [2]
    Moshé SL, Perucca T, Ryvlin P, et al. Epilepsy: new advances[J]. Lancet, 2015, 385(9971): 884–898. doi: 10.1016/S0140-6736(14)60456-6
    [3]
    Adeli H, Ghosh-Dastidar S. Automated EEG - based diagnosis of neurological disorders inventing the future of neurology[M]. New York: CRC Press, 2010: 71–75.
    [4]
    Gotman J. Automatic detection of seizures and spikes[J]. J Clin Neurophysiol, 1999, 16(2): 130–140. doi: 10.1097/00004691-199903000-00005
    [5]
    Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment[D]. Cambridge: Harvard-MIT Division of Health Sciences and Technology, 2009: 157–162.
    [6]
    Alickovic E, Kevric J, Subasi A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction[J]. Biomed Signal Process Control, 2018, 39: 94–102. doi: 10.1016/j.bspc.2017.07.022
    [7]
    Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks[J]. Comput Intell Neurosci, 2007, 2007: 80510.
    [8]
    Xie SK, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis[J]. Med Biol Eng Comput, 2013, 51(1-2): 49–60. doi: 10.1007/s11517-012-0967-8
    [9]
    Chen GY. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features[J]. Expert Syst Appl, 2014, 41(5): 2391–2394. doi: 10.1016/j.eswa.2013.09.037
    [10]
    Acharya D, Rani A, Agarwal S, et al. Application of adaptive savitzky-golay filter for EEG signal processing[J]. Perspect Sci, 2016, 8: 677–679. doi: 10.1016/j.pisc.2016.06.056
    [11]
    Polat K, Günes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform[J]. Appl Mathem Comput, 2007, 187(2): 1017–1026. doi: 10.1016/j.amc.2006.09.022
    [12]
    Duque-Muñoz L, Espinosa-Oviedo JJ, Castellanos-Dominguez CG. Identification and monitoring of brain activity based on stochastic relevance analysis of short - time EEG rhythms[J]. BioMed Eng OnLine, 2014, 13: 123. doi: 10.1186/1475-925X-13-123
    [13]
    Acharya UR, Sree V, Ang PCA, et al. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals[J]. Int J Neural Syst, 2012, 22(2): 1250002. doi: 10.1142/S0129065712500025
    [14]
    Gandhi TK, Chakraborty P, Roy PG, et al. Discrete harmony search based expert model for epileptic seizure detection in electroencephalography[J]. Expert Syst Appl, 2012, 39(4): 4055–4062. doi: 10.1016/j.eswa.2011.09.093
    [15]
    Swami P, Gandhi TK, Panigrahi BK, et al. A comparative account of modelling seizure detection system using wavelet techniques[J]. Int J Syst Sci: Oper Logist, 2017, 4(1): 41–52.
    [16]
    Rafiuddin N, Khan YU, Farooq O. Feature extraction and classification of EEG for automatic seizure detection[C]//Proceedings of 2011 International Conference on Multimedia Signal Processing and Communication Technologies. Aligarh: IEEE, 2011.
    [17]
    Gandhi T, Panigrahi BK, Bhatia M, et al. Expert model for detection of epileptic activity in EEG signature[J]. Expert Syst Appl, 2010, 37(4): 3513–3520. doi: 10.1016/j.eswa.2009.10.036
    [18]
    Gandhi T, Panigrahi BK, Anand S. A comparative study of wavelet families for EEG signal classification[J]. Neurocomputing, 2011, 74(17): 3051–3057. doi: 10.1016/j.neucom.2011.04.029
    [19]
    Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines[J]. Expert Syst Appl, 2010, 37(12): 8659–8666. doi: 10.1016/j.eswa.2010.06.065
    [20]
    Selesnick WI, Baraniuk RG, Kingsbury NC. The dual-tree complex wavelet transform[J]. IEEE Signal Process Mag, 2005, 22(6): 123–151. doi: 10.1109/MSP.2005.1550194
    [21]
    Swami P, Gandhi TK, Panigrahi BK, et al. A novel robust diagnostic model to detect seizures in electroencephalography[J]. Expert Syst Appl, 2016, 56: 116–130. doi: 10.1016/j.eswa.2016.02.040
    [22]
    Swami P, Godiyal AK, Santhosh J, et al. Robust expert system design for automated detection of epileptic seizures using SVM classifier[C]//Proceedings of 2014 International Conference on Parallel, Distributed and Grid Computing. Solan: IEEE, 2014: 219–222.
    [23]
    Fergus P, Hignett D, Hussain AJ, et al. An advanced machine learning approach to generalised epileptic seizure detection[C]//Proceedings of the 10th International Conference on Intelligent Computing. Taiyuan, China: 2014, Springer: 112–118.
    [24]
    Alickovic E, Subasi A. Effect of Multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases[J]. Circuits, Syst Signal Process, 2015, 34(2): 513–533. doi: 10.1007/s00034-014-9864-8
    [25]
    Gokgoz E, Subasi A. Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders[J]. J Med Syst, 2014, 38(4): 31. doi: 10.1007/s10916-014-0031-3
    [26]
    Kevric J, Subasi A. The effect of multiscale PCA de-noising in epileptic seizure detection[J]. J Med Syst, 2014, 38(10): 131. doi: 10.1007/s10916-014-0131-0
    [27]
    Agarwal S, Rani A, Singh V, et al. EEG Signal enhancement using cascaded S-Golay filter[J]. Biomed Signal Process Control, 2017, 36: 194–204. doi: 10.1016/j.bspc.2017.04.004
    [28]
    Aminghafari M, Cheze N, Poggi JM. Multivariate denoising using wavelets and principal component analysis[J]. Computat Statist Data Anal, 2006, 50(9): 2381–2398. doi: 10.1016/j.csda.2004.12.010
    [29]
    Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions[J]. Comput Methods Programs Biomed, 2014, 113(2): 494–502. doi: 10.1016/j.cmpb.2013.11.014
    [30]
    Rilling G, Flandrin P, Gonçalvès P. On empirical mode decomposition and its algorithms[C]//Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. Grado: IEEE, 2003.
    [31]
    Alickovic E, Subasi A. Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier[J]. J Med Syst, 2016, 40(4): 108. doi: 10.1007/s10916-016-0467-8
    [32]
    Duda RO, Hart PE, Stork DG. Pattern classification[M]. 2nd ed. New York: Wiley, 2001.
    [33]
    Fukunaga K. Introduction to statistical pattern recognition[M]. 2nd ed. San Diego: Academic Press, Inc, 1990.
    [34]
    Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM, 1992.
    [35]
    Vapnik VN. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
    [36]
    Mitchell TM. Machine learning[M]. New York: McGraw-Hill, 1997.
    [37]
    Aha DW, Kibler D, Albert MK. Instance-Based learning algorithms[J]. Mach Learn, 1991, 6(1): 37–66.
    [38]
    Smit DJA, Boersma M, Schnack HG, et al. The brain matures with stronger functional connectivity and decreased randomness of its network[J]. PLoS One, 2012, 7(5): e36896. doi: 10.1371/journal.pone.0036896
    [39]
    Metin A. Time frequency and wavelets in biomedical signal processing[M]. New York: Wiley-IEEE Press, 1998: 174–176, 207–210.
    [40]
    Qiao XY, Liu YF. Adaptive weighted learning for unbalanced multicategory classification[J]. Biometrics, 2009, 65(1): 159–168. doi: 10.1111/j.1541-0420.2008.01017.x
  • Cited by

    Periodical cited type(53)

    1. Pan S, Yan H, Zhu J, et al. GYY4137, as a slow-releasing H2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol, 2024, 15: 1476407. DOI:10.3389/fphar.2024.1476407
    2. Jin YQ, Yuan H, Liu YF, et al. Role of hydrogen sulfide in health and disease. MedComm (2020), 2024, 5(9): e661. DOI:10.1002/mco2.661
    3. Sun X, Wu S, Mao C, et al. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules, 2024, 14(7): 740. DOI:10.3390/biom14070740
    4. Pagliaro P, Weber NC, Femminò S, et al. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol, 2024, 119(4): 509-544. DOI:10.1007/s00395-024-01061-1
    5. Dugbartey GJ, Juriasingani S, Richard-Mohamed M, et al. Static Cold Storage with Mitochondria-Targeted Hydrogen Sulfide Donor Improves Renal Graft Function in an Ex Vivo Porcine Model of Controlled Donation-after-Cardiac-Death Kidney Transplantation. Int J Mol Sci, 2023, 24(18): 14017. DOI:10.3390/ijms241814017
    6. Hu Q, Lukesh JC 3rd. H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel), 2023, 12(3): 650. DOI:10.3390/antiox12030650
    7. Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(8): 1633-1646. DOI:10.1007/s00210-023-02469-7
    8. Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389. DOI:10.3390/molecules27113389
    9. Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9
    10. Zhang Y, Gong W, Xu M, et al. Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3. Int J Mol Sci, 2021, 22(21): 11893. DOI:10.3390/ijms222111893
    11. McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484. DOI:10.3390/jcm10163484
    12. Testai L, Brancaleone V, Flori L, et al. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel), 2021, 10(6): 910. DOI:10.3390/antiox10060910
    13. Wang WL, Ge TY, Chen X, et al. Advances in the Protective Mechanism of NO, H2S, and H2 in Myocardial Ischemic Injury. Front Cardiovasc Med, 2020, 7: 588206. DOI:10.3389/fcvm.2020.588206
    14. Denoix N, McCook O, Ecker S, et al. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel), 2020, 9(8): 748. DOI:10.3390/antiox9080748
    15. Pieretti JC, Junho CVC, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res, 2020, 161: 105121. DOI:10.1016/j.phrs.2020.105121
    16. Chen LJ, Ning JZ, Cheng F, et al. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci, 2020, 40(2): 332-338. DOI:10.1007/s11596-020-2180-6
    17. Yurinskaya MM, Krasnov GS, Kulikova DA, et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res, 2020, 69(5): 481-495. DOI:10.1007/s00011-020-01329-x
    18. Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev, 2020, 2020: 4105382. DOI:10.1155/2020/4105382
    19. Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514. DOI:10.1016/j.trre.2019.100514
    20. Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res, 2019, 34(2): 94-102. DOI:10.7555/JBR.33.20190071
    21. Newton TD, Pluth MD. Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem Sci, 2019, 10(46): 10723-10727. DOI:10.1039/c9sc04616j
    22. Luo H, Song S, Chen Y, et al. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev, 2019, 2019: 2193019. DOI:10.1155/2019/2193019
    23. Maassen H, Hendriks KDW, Venema LH, et al. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One, 2019, 14(11): e0225152. DOI:10.1371/journal.pone.0225152
    24. Chen Z, Tang J, Wang P, et al. GYY4137 Attenuates Sodium Deoxycholate-Induced Intestinal Barrier Injury Both In Vitro and In Vivo. Biomed Res Int, 2019, 2019: 5752323. DOI:10.1155/2019/5752323
    25. Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111. DOI:10.14744/AnatolJCardiol.2019.83648
    26. Van Dingenen J, Pieters L, Vral A, et al. The H2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol, 2019, 10: 116. DOI:10.3389/fphar.2019.00116
    27. Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888. DOI:10.2147/IJN.S186225
    28. Cao X, Zhang W, Moore PK, et al. Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci, 2019, 20(2): 313. DOI:10.3390/ijms20020313
    29. Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38. DOI:10.1089/ars.2017.7058
    30. Merz T, Lukaschewski B, Wigger D, et al. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp, 2018, 6(1): 41. DOI:10.1186/s40635-018-0207-0
    31. Zhang L, Wang Y, Li Y, et al. Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol, 2018, 9: 1066. DOI:10.3389/fphar.2018.01066
    32. Zhang Y, Liu X, Zhang L, et al. Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. Mol Ther Nucleic Acids, 2018, 13: 189-197. DOI:10.1016/j.omtn.2018.09.001
    33. Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel), 2018, 7(10): 129. DOI:10.3390/antiox7100129
    34. Woods JJ, Cao J, Lippert AR, et al. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J Am Chem Soc, 2018, 140(39): 12383-12387. DOI:10.1021/jacs.8b08695
    35. Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863. DOI:10.1007/s11325-018-1656-0
    36. Zeng C, Jiang W, Zheng R, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PLoS One, 2018, 13(3): e0193845. DOI:10.1371/journal.pone.0193845
    37. Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439. DOI:10.3892/etm.2017.5417
    38. Meng G, Zhao S, Xie L, et al. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol, 2018, 175(8): 1146-1156. DOI:10.1111/bph.13825
    39. Peng Q, Wang X, Wu K, et al. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol, 2017, 10(7): 7707-7717.
    40. Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol, 2017, 8: 810. DOI:10.3389/fphar.2017.00810
    41. Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev, 2017, 69(4): 497-564. DOI:10.1124/pr.117.014050
    42. Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930. DOI:10.12659/msm.902324
    43. Sun X, Wang W, Dai J, et al. A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury. Sci Rep, 2017, 7(1): 3541. DOI:10.1038/s41598-017-03941-0
    44. Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget, 2017, 8(19): 31888-31900. DOI:10.18632/oncotarget.16649
    45. Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal, 2017, 27(10): 634-653. DOI:10.1089/ars.2017.7096
    46. Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22(2): 295. DOI:10.3390/molecules22020295
    47. Bazhanov N, Escaffre O, Freiberg AN, et al. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep, 2017, 7: 41029. DOI:10.1038/srep41029
    48. Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385. DOI:10.3389/fphar.2016.00385
    49. Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371: 58-66. DOI:10.1016/j.tox.2016.10.001
    50. Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27. DOI:10.3389/fcvm.2016.00027
    51. Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119. DOI:10.1186/s12872-016-0294-3
    52. Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8. DOI:10.18632/oncotarget.7678
    53. Singh SB, Lin HC. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3(4): 866-89. DOI:10.3390/microorganisms3040866

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3875) PDF downloads (199) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return