Citation: | Slimen Itaf Ben, Boubchir Larbi, Mbarki Zouhair, Seddik Hassene. EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms[J]. The Journal of Biomedical Research, 2020, 34(3): 151-161. DOI: 10.7555/JBR.34.20190026 |
[1] |
Acharya UR, Sree SV, Swapna G, et al. Automated EEG analysis of epilepsy: a review[J]. Knowl-Based Syst, 2013, 45: 147–165. doi: 10.1016/j.knosys.2013.02.014
|
[2] |
Moshé SL, Perucca T, Ryvlin P, et al. Epilepsy: new advances[J]. Lancet, 2015, 385(9971): 884–898. doi: 10.1016/S0140-6736(14)60456-6
|
[3] |
Adeli H, Ghosh-Dastidar S. Automated EEG - based diagnosis of neurological disorders inventing the future of neurology[M]. New York: CRC Press, 2010: 71–75.
|
[4] |
Gotman J. Automatic detection of seizures and spikes[J]. J Clin Neurophysiol, 1999, 16(2): 130–140. doi: 10.1097/00004691-199903000-00005
|
[5] |
Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment[D]. Cambridge: Harvard-MIT Division of Health Sciences and Technology, 2009: 157–162.
|
[6] |
Alickovic E, Kevric J, Subasi A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction[J]. Biomed Signal Process Control, 2018, 39: 94–102. doi: 10.1016/j.bspc.2017.07.022
|
[7] |
Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks[J]. Comput Intell Neurosci, 2007, 2007: 80510.
|
[8] |
Xie SK, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis[J]. Med Biol Eng Comput, 2013, 51(1-2): 49–60. doi: 10.1007/s11517-012-0967-8
|
[9] |
Chen GY. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features[J]. Expert Syst Appl, 2014, 41(5): 2391–2394. doi: 10.1016/j.eswa.2013.09.037
|
[10] |
Acharya D, Rani A, Agarwal S, et al. Application of adaptive savitzky-golay filter for EEG signal processing[J]. Perspect Sci, 2016, 8: 677–679. doi: 10.1016/j.pisc.2016.06.056
|
[11] |
Polat K, Günes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform[J]. Appl Mathem Comput, 2007, 187(2): 1017–1026. doi: 10.1016/j.amc.2006.09.022
|
[12] |
Duque-Muñoz L, Espinosa-Oviedo JJ, Castellanos-Dominguez CG. Identification and monitoring of brain activity based on stochastic relevance analysis of short - time EEG rhythms[J]. BioMed Eng OnLine, 2014, 13: 123. doi: 10.1186/1475-925X-13-123
|
[13] |
Acharya UR, Sree V, Ang PCA, et al. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals[J]. Int J Neural Syst, 2012, 22(2): 1250002. doi: 10.1142/S0129065712500025
|
[14] |
Gandhi TK, Chakraborty P, Roy PG, et al. Discrete harmony search based expert model for epileptic seizure detection in electroencephalography[J]. Expert Syst Appl, 2012, 39(4): 4055–4062. doi: 10.1016/j.eswa.2011.09.093
|
[15] |
Swami P, Gandhi TK, Panigrahi BK, et al. A comparative account of modelling seizure detection system using wavelet techniques[J]. Int J Syst Sci: Oper Logist, 2017, 4(1): 41–52.
|
[16] |
Rafiuddin N, Khan YU, Farooq O. Feature extraction and classification of EEG for automatic seizure detection[C]//Proceedings of 2011 International Conference on Multimedia Signal Processing and Communication Technologies. Aligarh: IEEE, 2011.
|
[17] |
Gandhi T, Panigrahi BK, Bhatia M, et al. Expert model for detection of epileptic activity in EEG signature[J]. Expert Syst Appl, 2010, 37(4): 3513–3520. doi: 10.1016/j.eswa.2009.10.036
|
[18] |
Gandhi T, Panigrahi BK, Anand S. A comparative study of wavelet families for EEG signal classification[J]. Neurocomputing, 2011, 74(17): 3051–3057. doi: 10.1016/j.neucom.2011.04.029
|
[19] |
Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines[J]. Expert Syst Appl, 2010, 37(12): 8659–8666. doi: 10.1016/j.eswa.2010.06.065
|
[20] |
Selesnick WI, Baraniuk RG, Kingsbury NC. The dual-tree complex wavelet transform[J]. IEEE Signal Process Mag, 2005, 22(6): 123–151. doi: 10.1109/MSP.2005.1550194
|
[21] |
Swami P, Gandhi TK, Panigrahi BK, et al. A novel robust diagnostic model to detect seizures in electroencephalography[J]. Expert Syst Appl, 2016, 56: 116–130. doi: 10.1016/j.eswa.2016.02.040
|
[22] |
Swami P, Godiyal AK, Santhosh J, et al. Robust expert system design for automated detection of epileptic seizures using SVM classifier[C]//Proceedings of 2014 International Conference on Parallel, Distributed and Grid Computing. Solan: IEEE, 2014: 219–222.
|
[23] |
Fergus P, Hignett D, Hussain AJ, et al. An advanced machine learning approach to generalised epileptic seizure detection[C]//Proceedings of the 10th International Conference on Intelligent Computing. Taiyuan, China: 2014, Springer: 112–118.
|
[24] |
Alickovic E, Subasi A. Effect of Multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases[J]. Circuits, Syst Signal Process, 2015, 34(2): 513–533. doi: 10.1007/s00034-014-9864-8
|
[25] |
Gokgoz E, Subasi A. Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders[J]. J Med Syst, 2014, 38(4): 31. doi: 10.1007/s10916-014-0031-3
|
[26] |
Kevric J, Subasi A. The effect of multiscale PCA de-noising in epileptic seizure detection[J]. J Med Syst, 2014, 38(10): 131. doi: 10.1007/s10916-014-0131-0
|
[27] |
Agarwal S, Rani A, Singh V, et al. EEG Signal enhancement using cascaded S-Golay filter[J]. Biomed Signal Process Control, 2017, 36: 194–204. doi: 10.1016/j.bspc.2017.04.004
|
[28] |
Aminghafari M, Cheze N, Poggi JM. Multivariate denoising using wavelets and principal component analysis[J]. Computat Statist Data Anal, 2006, 50(9): 2381–2398. doi: 10.1016/j.csda.2004.12.010
|
[29] |
Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions[J]. Comput Methods Programs Biomed, 2014, 113(2): 494–502. doi: 10.1016/j.cmpb.2013.11.014
|
[30] |
Rilling G, Flandrin P, Gonçalvès P. On empirical mode decomposition and its algorithms[C]//Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. Grado: IEEE, 2003.
|
[31] |
Alickovic E, Subasi A. Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier[J]. J Med Syst, 2016, 40(4): 108. doi: 10.1007/s10916-016-0467-8
|
[32] |
Duda RO, Hart PE, Stork DG. Pattern classification[M]. 2nd ed. New York: Wiley, 2001.
|
[33] |
Fukunaga K. Introduction to statistical pattern recognition[M]. 2nd ed. San Diego: Academic Press, Inc, 1990.
|
[34] |
Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM, 1992.
|
[35] |
Vapnik VN. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
|
[36] |
Mitchell TM. Machine learning[M]. New York: McGraw-Hill, 1997.
|
[37] |
Aha DW, Kibler D, Albert MK. Instance-Based learning algorithms[J]. Mach Learn, 1991, 6(1): 37–66.
|
[38] |
Smit DJA, Boersma M, Schnack HG, et al. The brain matures with stronger functional connectivity and decreased randomness of its network[J]. PLoS One, 2012, 7(5): e36896. doi: 10.1371/journal.pone.0036896
|
[39] |
Metin A. Time frequency and wavelets in biomedical signal processing[M]. New York: Wiley-IEEE Press, 1998: 174–176, 207–210.
|
[40] |
Qiao XY, Liu YF. Adaptive weighted learning for unbalanced multicategory classification[J]. Biometrics, 2009, 65(1): 159–168. doi: 10.1111/j.1541-0420.2008.01017.x
|
1. | Pan S, Yan H, Zhu J, et al. GYY4137, as a slow-releasing H2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol, 2024, 15: 1476407. DOI:10.3389/fphar.2024.1476407 |
2. | Jin YQ, Yuan H, Liu YF, et al. Role of hydrogen sulfide in health and disease. MedComm (2020), 2024, 5(9): e661. DOI:10.1002/mco2.661 |
3. | Sun X, Wu S, Mao C, et al. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules, 2024, 14(7): 740. DOI:10.3390/biom14070740 |
4. | Pagliaro P, Weber NC, Femminò S, et al. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol, 2024, 119(4): 509-544. DOI:10.1007/s00395-024-01061-1 |
5. | Dugbartey GJ, Juriasingani S, Richard-Mohamed M, et al. Static Cold Storage with Mitochondria-Targeted Hydrogen Sulfide Donor Improves Renal Graft Function in an Ex Vivo Porcine Model of Controlled Donation-after-Cardiac-Death Kidney Transplantation. Int J Mol Sci, 2023, 24(18): 14017. DOI:10.3390/ijms241814017 |
6. | Hu Q, Lukesh JC 3rd. H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel), 2023, 12(3): 650. DOI:10.3390/antiox12030650 |
7. | Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(8): 1633-1646. DOI:10.1007/s00210-023-02469-7 |
8. | Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389. DOI:10.3390/molecules27113389 |
9. | Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9 |
10. | Zhang Y, Gong W, Xu M, et al. Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3. Int J Mol Sci, 2021, 22(21): 11893. DOI:10.3390/ijms222111893 |
11. | McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484. DOI:10.3390/jcm10163484 |
12. | Testai L, Brancaleone V, Flori L, et al. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel), 2021, 10(6): 910. DOI:10.3390/antiox10060910 |
13. | Wang WL, Ge TY, Chen X, et al. Advances in the Protective Mechanism of NO, H2S, and H2 in Myocardial Ischemic Injury. Front Cardiovasc Med, 2020, 7: 588206. DOI:10.3389/fcvm.2020.588206 |
14. | Denoix N, McCook O, Ecker S, et al. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel), 2020, 9(8): 748. DOI:10.3390/antiox9080748 |
15. | Pieretti JC, Junho CVC, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res, 2020, 161: 105121. DOI:10.1016/j.phrs.2020.105121 |
16. | Chen LJ, Ning JZ, Cheng F, et al. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci, 2020, 40(2): 332-338. DOI:10.1007/s11596-020-2180-6 |
17. | Yurinskaya MM, Krasnov GS, Kulikova DA, et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res, 2020, 69(5): 481-495. DOI:10.1007/s00011-020-01329-x |
18. | Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev, 2020, 2020: 4105382. DOI:10.1155/2020/4105382 |
19. | Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514. DOI:10.1016/j.trre.2019.100514 |
20. | Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res, 2019, 34(2): 94-102. DOI:10.7555/JBR.33.20190071 |
21. | Newton TD, Pluth MD. Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem Sci, 2019, 10(46): 10723-10727. DOI:10.1039/c9sc04616j |
22. | Luo H, Song S, Chen Y, et al. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev, 2019, 2019: 2193019. DOI:10.1155/2019/2193019 |
23. | Maassen H, Hendriks KDW, Venema LH, et al. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One, 2019, 14(11): e0225152. DOI:10.1371/journal.pone.0225152 |
24. | Chen Z, Tang J, Wang P, et al. GYY4137 Attenuates Sodium Deoxycholate-Induced Intestinal Barrier Injury Both In Vitro and In Vivo. Biomed Res Int, 2019, 2019: 5752323. DOI:10.1155/2019/5752323 |
25. | Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111. DOI:10.14744/AnatolJCardiol.2019.83648 |
26. | Van Dingenen J, Pieters L, Vral A, et al. The H2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol, 2019, 10: 116. DOI:10.3389/fphar.2019.00116 |
27. | Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888. DOI:10.2147/IJN.S186225 |
28. | Cao X, Zhang W, Moore PK, et al. Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci, 2019, 20(2): 313. DOI:10.3390/ijms20020313 |
29. | Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38. DOI:10.1089/ars.2017.7058 |
30. | Merz T, Lukaschewski B, Wigger D, et al. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp, 2018, 6(1): 41. DOI:10.1186/s40635-018-0207-0 |
31. | Zhang L, Wang Y, Li Y, et al. Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol, 2018, 9: 1066. DOI:10.3389/fphar.2018.01066 |
32. | Zhang Y, Liu X, Zhang L, et al. Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. Mol Ther Nucleic Acids, 2018, 13: 189-197. DOI:10.1016/j.omtn.2018.09.001 |
33. | Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel), 2018, 7(10): 129. DOI:10.3390/antiox7100129 |
34. | Woods JJ, Cao J, Lippert AR, et al. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J Am Chem Soc, 2018, 140(39): 12383-12387. DOI:10.1021/jacs.8b08695 |
35. | Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863. DOI:10.1007/s11325-018-1656-0 |
36. | Zeng C, Jiang W, Zheng R, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PLoS One, 2018, 13(3): e0193845. DOI:10.1371/journal.pone.0193845 |
37. | Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439. DOI:10.3892/etm.2017.5417 |
38. | Meng G, Zhao S, Xie L, et al. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol, 2018, 175(8): 1146-1156. DOI:10.1111/bph.13825 |
39. |
Peng Q, Wang X, Wu K, et al. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol, 2017, 10(7): 7707-7717.
![]() |
40. | Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol, 2017, 8: 810. DOI:10.3389/fphar.2017.00810 |
41. | Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev, 2017, 69(4): 497-564. DOI:10.1124/pr.117.014050 |
42. | Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930. DOI:10.12659/msm.902324 |
43. | Sun X, Wang W, Dai J, et al. A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury. Sci Rep, 2017, 7(1): 3541. DOI:10.1038/s41598-017-03941-0 |
44. | Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget, 2017, 8(19): 31888-31900. DOI:10.18632/oncotarget.16649 |
45. | Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal, 2017, 27(10): 634-653. DOI:10.1089/ars.2017.7096 |
46. | Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22(2): 295. DOI:10.3390/molecules22020295 |
47. | Bazhanov N, Escaffre O, Freiberg AN, et al. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep, 2017, 7: 41029. DOI:10.1038/srep41029 |
48. | Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385. DOI:10.3389/fphar.2016.00385 |
49. | Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371: 58-66. DOI:10.1016/j.tox.2016.10.001 |
50. | Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27. DOI:10.3389/fcvm.2016.00027 |
51. | Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119. DOI:10.1186/s12872-016-0294-3 |
52. | Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8. DOI:10.18632/oncotarget.7678 |
53. | Singh SB, Lin HC. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3(4): 866-89. DOI:10.3390/microorganisms3040866 |