4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Dash Deba Prasad, H Kolekar Maheshkumar. Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform[J]. The Journal of Biomedical Research, 2020, 34(3): 170-179. DOI: 10.7555/JBR.34.20190006
Citation: Dash Deba Prasad, H Kolekar Maheshkumar. Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform[J]. The Journal of Biomedical Research, 2020, 34(3): 170-179. DOI: 10.7555/JBR.34.20190006

Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform

More Information
  • Corresponding author:

    Deba Prasad Dash, Department of Electrical Engineering, Institute of Technology Patna, Bihta, Near Amhara village, Bihar 801103, India. Tel: +91-7368064447, E-mail: dpdash.srf14@iitp.ac.in

  • Received Date: January 06, 2019
  • Revised Date: June 24, 2019
  • Accepted Date: November 15, 2019
  • Available Online: January 21, 2020
  • Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide. The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram (EEG) as a noninvasive procedure to record neuronal activities in the brain. EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals. Shannon entropy, collision entropy, transfer entropy, conditional probability, and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform. Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification. Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector. The accuracy of the proposed approach is higher for Q=2 and J=10. Transfer entropy is observed to be significant for different class combinations. Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time. The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals. The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.
  • [1]
    Sharma N, Kolekar MH, Jha K, et al. EEG and cognitive biomarkers based mild cognitive impairment diagnosis[J]. IRBM, 2019, 40(2): 113–121. doi: 10.1016/j.irbm.2018.11.007
    [2]
    Chen D, Wan SR, Xiang J, et al. A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG[J]. PLoS One, 2017, 12(3): e0173138. doi: 10.1371/journal.pone.0173138
    [3]
    Dash DP, Kolekar MH.A discrete-wavelet-transform-and hidden-Markov-model-based approach for epileptic focus localization[M].Hershey:IGI Global, 2018.
    [4]
    Dash DP, Kolekar MH. EEG based epileptic seizure detection using empirical mode decomposition and hidden Markov model[J]. Indian J Public Health Res Dev, 2017, 8(4): 897–903. doi: 10.5958/0976-5506.2017.00448.X
    [5]
    Tafreshi AK, Nasrabadi AM, Omidvarnia AH. Epileptic seizure detection using empirical mode decomposition[C]//Proceedings of 2008 IEEE International Symposium on Signal Processing and Information Technology. Sarajevo, Bosnia and Herzegovina, Serbia: IEEE, 2008: 238–242.
    [6]
    Chen GY. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features[J]. Exp Syst Appl, 2014, 41(5): 2391–2394.
    [7]
    Hassan AR, Haque MA. Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain[C]//Proceedings of 2015 IEEE Region 10 Conference. Macao, China: IEEE, 2015: 1–6.
    [8]
    Kolekar MH, Dash DP. A nonlinear feature based epileptic seizure detection using least square support vector machine classifier[C]//Proceedings of 2015 IEEE Region 10 Conference. Macao, China: IEEE, 2015: 1–6.
    [9]
    Boubchir L, Al-Maadeed S, Bouridane A. On the use of time-frequency features for detecting and classifying epileptic seizure activities in non-stationary EEG signals[C]//Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 5889–5893.
    [10]
    Niknazar M, Mousavi SR, Vahdat BV, et al. A new dissimilarity index of EEG signals for epileptic seizure detection[C]//Proceedings of the 4th International Symposium on Communications, Control and Signal Processing. Limassol, Cyprus: IEEE, 2010: 1–5.
    [11]
    Kang JH, Chung YG, Kim SP. An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms[J]. Comput Biol Med, 2015, 66: 352–356.
    [12]
    Janjarasjitt S, Loparo KA. Examination of scale-invariant characteristics of epileptic electroencephalograms using wavelet-based analysis[J]. Comput Electr Eng, 2014, 40(5): 1766–1773.
    [13]
    Gajic D, Djurovic Z, Gligorijevic J, et al. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis[J]. Front Comput Neurosc, 2015, 9: 38.
    [14]
    GajicD, Djurovic Z, Di Gennaro S, et al. Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition[J]. Biomed Eng: Appl, Basis Commun, 2014, 26(2): 1450021. doi: 10.4015/S1016237214500215
    [15]
    Kolekar MH, Sengupta S. Bayesian network-based customized highlight generation for broadcast soccer videos[J]. IEEE Transactions on Broadcasting, 2015, 61(2): 195–209. doi: 10.1109/TBC.2015.2424011
    [16]
    Kumar A, Kolekar MH. Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals[C]//Proceedings of 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems. Greater Noida, India: IEEE, 2014: 412–416.
    [17]
    Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform[J]. IEEE Trans Biomed Eng, 2017, 64(9): 2003–2015.
    [18]
    Chandel G, Upadhyaya P, Farooq O, et al. Detection of seizure event and its onset/offset using orthonormal triadic wavelet based features[J]. IRBM, 2019, 40(2): 103–112. doi: 10.1016/j.irbm.2018.12.002
    [19]
    Dash DP, Kolekar MH. Epileptic seizure detection based on EEG signal analysis using hierarchy based hidden markov model[C]//Proceedings of 2017 International Conference on Advances in Computing, Communications and Informatics. Udupi, India: IEEE, 2017: 1114–1120.
    [20]
    Andrzejak RG, Lehnertz K, Mormann F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state[J]. Phys Rev E, 2001, 64(6): 061907. doi: 10.1103/PhysRevE.64.061907
    [21]
    Ali Hossam S. Application of machine learning to epileptic seizure onset detection and treatment[D]. Massachusetts: Massachusetts Institute of Technology, 2009.
    [22]
    Hassan AR, Siuly S, Zhang YC. Epileptic seizure detection in EEG signals usingtunable-Q factor wavelet transform and bootstrap aggregating[J]. Comput Methods Programs Biomed, 2016, 137: 247–259. doi: 10.1016/j.cmpb.2016.09.008
    [23]
    Kumar A, Prakash A, Kumar R. Tunable Q-factor wavelet transform for extraction of weak bursts in the vibration signal of an angular contact bearing[J]. Procedia Technol, 2016, 25: 838–845. doi: 10.1016/j.protcy.2016.08.188
    [24]
    LiP, Karmakar C, Yearwood J, et al. Detection of epileptic seizure based on entropy analysis of short-term EEG[J]. PLoS One, 2018, 13(3): e0193691. doi: 10.1371/journal.pone.0193691
    [25]
    VourkasM, MicheloyannisS, Papadourakis G. Use of ANN and Hjorth parameters in mental-task discrimination[C]//Proceedings of the 1st International Conference Advances in Medical Signal and Information Processing. Bristol, UK: IET, 2000: 327–332.
    [26]
    OhSH, Lee YR, Kim HN. A novel EEG feature extraction method using Hjorth parameter[J]. Int J Electron Electr Eng, 2014, 2(2): 106–110.
    [27]
    Wang ZZ, Xie ZH. Infrared face recognition based on local binary patterns and kruskal-wallis test[C]//Proceedings of the IEEE/ACIS 13th International Conference on Computer and Information Science. Taiyuan, China: IEEE, 2014: 185–188.
    [28]
    Haghighat M, Abdel-Mottaleb M, Alhalabi W. Discriminant correlation analysis for feature level fusion with application to multimodal biometrics[C]//Proceedings of 2016 International Conference on Acoustics, Speech and Signal Processing. Shanghai, China: IEEE, 2016: 1866–1870.
    [29]
    Patel S, Sihmar S, Jatain A. A study of hierarchical clustering algorithms[C]//Proceedings of the 2nd International Conference on Computing for Sustainable Global Development. New Delhi, India: IEEE, 2015: 537–541.
    [30]
    HiranoS, Sun XG, Tsumoto S. Comparison of clustering methods for clinical databases[J]. Inf Sci, 2004, 159(3-4): 155–165. doi: 10.1016/j.ins.2003.03.011
    [31]
    Rabiner L, Juang B. An introduction to Hidden Markov Models[J]. IEEE ASSP Mag, 1986, 3(1): 4–16. doi: 10.1109/MASSP.1986.1165342
    [32]
    KroghA, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a Hidden Markov Model: application to complete genomes[J]. J Mol Biol, 2001, 305(3): 567–580. doi: 10.1006/jmbi.2000.4315
    [33]
    Kolekar MH, Dash DP. Hidden Markov Model based human activity recognition using shape and optical flow based features[C]//Proceedings of 2016 IEEE Region 10 Conference. Singapore: IEEE, 2016: 393–397.
    [34]
    Mari JF, HatonJP, Kriouile A. Automatic word recognition based on second-order Hidden Markov Models[J]. IEEE Trans Speech Audio Process, 1997, 5(1): 22–25. doi: 10.1109/89.554265
    [35]
    Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal using machine learning techniques[J]. Australas Phys Eng Sci Med, 2018, 41(1): 81–94. doi: 10.1007/s13246-017-0610-y
    [36]
    Liu XF, Jiang AM, Xu N. Automated epileptic seizure detection in EEGs using increment entropy[C]//Proceedings of the 30th IEEECanadian Conference on Electrical and Computer Engineering. Windsor, ON, Canada: IEEE, 2017: 1–4.
    [37]
    Li Y, Wang XD, Luo ML, et al. Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions[J]. IEEE J Biomed Health Inf, 2018, 22(2): 386–397.
  • Cited by

    Periodical cited type(53)

    1. Pan S, Yan H, Zhu J, et al. GYY4137, as a slow-releasing H2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol, 2024, 15: 1476407. DOI:10.3389/fphar.2024.1476407
    2. Jin YQ, Yuan H, Liu YF, et al. Role of hydrogen sulfide in health and disease. MedComm (2020), 2024, 5(9): e661. DOI:10.1002/mco2.661
    3. Sun X, Wu S, Mao C, et al. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules, 2024, 14(7): 740. DOI:10.3390/biom14070740
    4. Pagliaro P, Weber NC, Femminò S, et al. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol, 2024, 119(4): 509-544. DOI:10.1007/s00395-024-01061-1
    5. Dugbartey GJ, Juriasingani S, Richard-Mohamed M, et al. Static Cold Storage with Mitochondria-Targeted Hydrogen Sulfide Donor Improves Renal Graft Function in an Ex Vivo Porcine Model of Controlled Donation-after-Cardiac-Death Kidney Transplantation. Int J Mol Sci, 2023, 24(18): 14017. DOI:10.3390/ijms241814017
    6. Hu Q, Lukesh JC 3rd. H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel), 2023, 12(3): 650. DOI:10.3390/antiox12030650
    7. Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(8): 1633-1646. DOI:10.1007/s00210-023-02469-7
    8. Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389. DOI:10.3390/molecules27113389
    9. Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9
    10. Zhang Y, Gong W, Xu M, et al. Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3. Int J Mol Sci, 2021, 22(21): 11893. DOI:10.3390/ijms222111893
    11. McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484. DOI:10.3390/jcm10163484
    12. Testai L, Brancaleone V, Flori L, et al. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel), 2021, 10(6): 910. DOI:10.3390/antiox10060910
    13. Wang WL, Ge TY, Chen X, et al. Advances in the Protective Mechanism of NO, H2S, and H2 in Myocardial Ischemic Injury. Front Cardiovasc Med, 2020, 7: 588206. DOI:10.3389/fcvm.2020.588206
    14. Denoix N, McCook O, Ecker S, et al. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel), 2020, 9(8): 748. DOI:10.3390/antiox9080748
    15. Pieretti JC, Junho CVC, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res, 2020, 161: 105121. DOI:10.1016/j.phrs.2020.105121
    16. Chen LJ, Ning JZ, Cheng F, et al. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci, 2020, 40(2): 332-338. DOI:10.1007/s11596-020-2180-6
    17. Yurinskaya MM, Krasnov GS, Kulikova DA, et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res, 2020, 69(5): 481-495. DOI:10.1007/s00011-020-01329-x
    18. Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev, 2020, 2020: 4105382. DOI:10.1155/2020/4105382
    19. Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514. DOI:10.1016/j.trre.2019.100514
    20. Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res, 2019, 34(2): 94-102. DOI:10.7555/JBR.33.20190071
    21. Newton TD, Pluth MD. Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem Sci, 2019, 10(46): 10723-10727. DOI:10.1039/c9sc04616j
    22. Luo H, Song S, Chen Y, et al. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev, 2019, 2019: 2193019. DOI:10.1155/2019/2193019
    23. Maassen H, Hendriks KDW, Venema LH, et al. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One, 2019, 14(11): e0225152. DOI:10.1371/journal.pone.0225152
    24. Chen Z, Tang J, Wang P, et al. GYY4137 Attenuates Sodium Deoxycholate-Induced Intestinal Barrier Injury Both In Vitro and In Vivo. Biomed Res Int, 2019, 2019: 5752323. DOI:10.1155/2019/5752323
    25. Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111. DOI:10.14744/AnatolJCardiol.2019.83648
    26. Van Dingenen J, Pieters L, Vral A, et al. The H2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol, 2019, 10: 116. DOI:10.3389/fphar.2019.00116
    27. Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888. DOI:10.2147/IJN.S186225
    28. Cao X, Zhang W, Moore PK, et al. Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci, 2019, 20(2): 313. DOI:10.3390/ijms20020313
    29. Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38. DOI:10.1089/ars.2017.7058
    30. Merz T, Lukaschewski B, Wigger D, et al. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp, 2018, 6(1): 41. DOI:10.1186/s40635-018-0207-0
    31. Zhang L, Wang Y, Li Y, et al. Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol, 2018, 9: 1066. DOI:10.3389/fphar.2018.01066
    32. Zhang Y, Liu X, Zhang L, et al. Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. Mol Ther Nucleic Acids, 2018, 13: 189-197. DOI:10.1016/j.omtn.2018.09.001
    33. Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel), 2018, 7(10): 129. DOI:10.3390/antiox7100129
    34. Woods JJ, Cao J, Lippert AR, et al. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J Am Chem Soc, 2018, 140(39): 12383-12387. DOI:10.1021/jacs.8b08695
    35. Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863. DOI:10.1007/s11325-018-1656-0
    36. Zeng C, Jiang W, Zheng R, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PLoS One, 2018, 13(3): e0193845. DOI:10.1371/journal.pone.0193845
    37. Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439. DOI:10.3892/etm.2017.5417
    38. Meng G, Zhao S, Xie L, et al. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol, 2018, 175(8): 1146-1156. DOI:10.1111/bph.13825
    39. Peng Q, Wang X, Wu K, et al. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol, 2017, 10(7): 7707-7717.
    40. Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol, 2017, 8: 810. DOI:10.3389/fphar.2017.00810
    41. Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev, 2017, 69(4): 497-564. DOI:10.1124/pr.117.014050
    42. Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930. DOI:10.12659/msm.902324
    43. Sun X, Wang W, Dai J, et al. A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury. Sci Rep, 2017, 7(1): 3541. DOI:10.1038/s41598-017-03941-0
    44. Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget, 2017, 8(19): 31888-31900. DOI:10.18632/oncotarget.16649
    45. Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal, 2017, 27(10): 634-653. DOI:10.1089/ars.2017.7096
    46. Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22(2): 295. DOI:10.3390/molecules22020295
    47. Bazhanov N, Escaffre O, Freiberg AN, et al. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep, 2017, 7: 41029. DOI:10.1038/srep41029
    48. Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385. DOI:10.3389/fphar.2016.00385
    49. Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371: 58-66. DOI:10.1016/j.tox.2016.10.001
    50. Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27. DOI:10.3389/fcvm.2016.00027
    51. Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119. DOI:10.1186/s12872-016-0294-3
    52. Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8. DOI:10.18632/oncotarget.7678
    53. Singh SB, Lin HC. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3(4): 866-89. DOI:10.3390/microorganisms3040866

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3443) PDF downloads (98) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return