Citation: | Dash Deba Prasad, H Kolekar Maheshkumar. Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform[J]. The Journal of Biomedical Research, 2020, 34(3): 170-179. DOI: 10.7555/JBR.34.20190006 |
[1] |
Sharma N, Kolekar MH, Jha K, et al. EEG and cognitive biomarkers based mild cognitive impairment diagnosis[J]. IRBM, 2019, 40(2): 113–121. doi: 10.1016/j.irbm.2018.11.007
|
[2] |
Chen D, Wan SR, Xiang J, et al. A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG[J]. PLoS One, 2017, 12(3): e0173138. doi: 10.1371/journal.pone.0173138
|
[3] |
Dash DP, Kolekar MH.A discrete-wavelet-transform-and hidden-Markov-model-based approach for epileptic focus localization[M].Hershey:IGI Global, 2018.
|
[4] |
Dash DP, Kolekar MH. EEG based epileptic seizure detection using empirical mode decomposition and hidden Markov model[J]. Indian J Public Health Res Dev, 2017, 8(4): 897–903. doi: 10.5958/0976-5506.2017.00448.X
|
[5] |
Tafreshi AK, Nasrabadi AM, Omidvarnia AH. Epileptic seizure detection using empirical mode decomposition[C]//Proceedings of 2008 IEEE International Symposium on Signal Processing and Information Technology. Sarajevo, Bosnia and Herzegovina, Serbia: IEEE, 2008: 238–242.
|
[6] |
Chen GY. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features[J]. Exp Syst Appl, 2014, 41(5): 2391–2394.
|
[7] |
Hassan AR, Haque MA. Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain[C]//Proceedings of 2015 IEEE Region 10 Conference. Macao, China: IEEE, 2015: 1–6.
|
[8] |
Kolekar MH, Dash DP. A nonlinear feature based epileptic seizure detection using least square support vector machine classifier[C]//Proceedings of 2015 IEEE Region 10 Conference. Macao, China: IEEE, 2015: 1–6.
|
[9] |
Boubchir L, Al-Maadeed S, Bouridane A. On the use of time-frequency features for detecting and classifying epileptic seizure activities in non-stationary EEG signals[C]//Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 5889–5893.
|
[10] |
Niknazar M, Mousavi SR, Vahdat BV, et al. A new dissimilarity index of EEG signals for epileptic seizure detection[C]//Proceedings of the 4th International Symposium on Communications, Control and Signal Processing. Limassol, Cyprus: IEEE, 2010: 1–5.
|
[11] |
Kang JH, Chung YG, Kim SP. An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms[J]. Comput Biol Med, 2015, 66: 352–356.
|
[12] |
Janjarasjitt S, Loparo KA. Examination of scale-invariant characteristics of epileptic electroencephalograms using wavelet-based analysis[J]. Comput Electr Eng, 2014, 40(5): 1766–1773.
|
[13] |
Gajic D, Djurovic Z, Gligorijevic J, et al. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis[J]. Front Comput Neurosc, 2015, 9: 38.
|
[14] |
GajicD, Djurovic Z, Di Gennaro S, et al. Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition[J]. Biomed Eng: Appl, Basis Commun, 2014, 26(2): 1450021. doi: 10.4015/S1016237214500215
|
[15] |
Kolekar MH, Sengupta S. Bayesian network-based customized highlight generation for broadcast soccer videos[J]. IEEE Transactions on Broadcasting, 2015, 61(2): 195–209. doi: 10.1109/TBC.2015.2424011
|
[16] |
Kumar A, Kolekar MH. Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals[C]//Proceedings of 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems. Greater Noida, India: IEEE, 2014: 412–416.
|
[17] |
Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform[J]. IEEE Trans Biomed Eng, 2017, 64(9): 2003–2015.
|
[18] |
Chandel G, Upadhyaya P, Farooq O, et al. Detection of seizure event and its onset/offset using orthonormal triadic wavelet based features[J]. IRBM, 2019, 40(2): 103–112. doi: 10.1016/j.irbm.2018.12.002
|
[19] |
Dash DP, Kolekar MH. Epileptic seizure detection based on EEG signal analysis using hierarchy based hidden markov model[C]//Proceedings of 2017 International Conference on Advances in Computing, Communications and Informatics. Udupi, India: IEEE, 2017: 1114–1120.
|
[20] |
Andrzejak RG, Lehnertz K, Mormann F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state[J]. Phys Rev E, 2001, 64(6): 061907. doi: 10.1103/PhysRevE.64.061907
|
[21] |
Ali Hossam S. Application of machine learning to epileptic seizure onset detection and treatment[D]. Massachusetts: Massachusetts Institute of Technology, 2009.
|
[22] |
Hassan AR, Siuly S, Zhang YC. Epileptic seizure detection in EEG signals usingtunable-Q factor wavelet transform and bootstrap aggregating[J]. Comput Methods Programs Biomed, 2016, 137: 247–259. doi: 10.1016/j.cmpb.2016.09.008
|
[23] |
Kumar A, Prakash A, Kumar R. Tunable Q-factor wavelet transform for extraction of weak bursts in the vibration signal of an angular contact bearing[J]. Procedia Technol, 2016, 25: 838–845. doi: 10.1016/j.protcy.2016.08.188
|
[24] |
LiP, Karmakar C, Yearwood J, et al. Detection of epileptic seizure based on entropy analysis of short-term EEG[J]. PLoS One, 2018, 13(3): e0193691. doi: 10.1371/journal.pone.0193691
|
[25] |
VourkasM, MicheloyannisS, Papadourakis G. Use of ANN and Hjorth parameters in mental-task discrimination[C]//Proceedings of the 1st International Conference Advances in Medical Signal and Information Processing. Bristol, UK: IET, 2000: 327–332.
|
[26] |
OhSH, Lee YR, Kim HN. A novel EEG feature extraction method using Hjorth parameter[J]. Int J Electron Electr Eng, 2014, 2(2): 106–110.
|
[27] |
Wang ZZ, Xie ZH. Infrared face recognition based on local binary patterns and kruskal-wallis test[C]//Proceedings of the IEEE/ACIS 13th International Conference on Computer and Information Science. Taiyuan, China: IEEE, 2014: 185–188.
|
[28] |
Haghighat M, Abdel-Mottaleb M, Alhalabi W. Discriminant correlation analysis for feature level fusion with application to multimodal biometrics[C]//Proceedings of 2016 International Conference on Acoustics, Speech and Signal Processing. Shanghai, China: IEEE, 2016: 1866–1870.
|
[29] |
Patel S, Sihmar S, Jatain A. A study of hierarchical clustering algorithms[C]//Proceedings of the 2nd International Conference on Computing for Sustainable Global Development. New Delhi, India: IEEE, 2015: 537–541.
|
[30] |
HiranoS, Sun XG, Tsumoto S. Comparison of clustering methods for clinical databases[J]. Inf Sci, 2004, 159(3-4): 155–165. doi: 10.1016/j.ins.2003.03.011
|
[31] |
Rabiner L, Juang B. An introduction to Hidden Markov Models[J]. IEEE ASSP Mag, 1986, 3(1): 4–16. doi: 10.1109/MASSP.1986.1165342
|
[32] |
KroghA, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a Hidden Markov Model: application to complete genomes[J]. J Mol Biol, 2001, 305(3): 567–580. doi: 10.1006/jmbi.2000.4315
|
[33] |
Kolekar MH, Dash DP. Hidden Markov Model based human activity recognition using shape and optical flow based features[C]//Proceedings of 2016 IEEE Region 10 Conference. Singapore: IEEE, 2016: 393–397.
|
[34] |
Mari JF, HatonJP, Kriouile A. Automatic word recognition based on second-order Hidden Markov Models[J]. IEEE Trans Speech Audio Process, 1997, 5(1): 22–25. doi: 10.1109/89.554265
|
[35] |
Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal using machine learning techniques[J]. Australas Phys Eng Sci Med, 2018, 41(1): 81–94. doi: 10.1007/s13246-017-0610-y
|
[36] |
Liu XF, Jiang AM, Xu N. Automated epileptic seizure detection in EEGs using increment entropy[C]//Proceedings of the 30th IEEECanadian Conference on Electrical and Computer Engineering. Windsor, ON, Canada: IEEE, 2017: 1–4.
|
[37] |
Li Y, Wang XD, Luo ML, et al. Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions[J]. IEEE J Biomed Health Inf, 2018, 22(2): 386–397.
|
1. | Pan S, Yan H, Zhu J, et al. GYY4137, as a slow-releasing H2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol, 2024, 15: 1476407. DOI:10.3389/fphar.2024.1476407 |
2. | Jin YQ, Yuan H, Liu YF, et al. Role of hydrogen sulfide in health and disease. MedComm (2020), 2024, 5(9): e661. DOI:10.1002/mco2.661 |
3. | Sun X, Wu S, Mao C, et al. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules, 2024, 14(7): 740. DOI:10.3390/biom14070740 |
4. | Pagliaro P, Weber NC, Femminò S, et al. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol, 2024, 119(4): 509-544. DOI:10.1007/s00395-024-01061-1 |
5. | Dugbartey GJ, Juriasingani S, Richard-Mohamed M, et al. Static Cold Storage with Mitochondria-Targeted Hydrogen Sulfide Donor Improves Renal Graft Function in an Ex Vivo Porcine Model of Controlled Donation-after-Cardiac-Death Kidney Transplantation. Int J Mol Sci, 2023, 24(18): 14017. DOI:10.3390/ijms241814017 |
6. | Hu Q, Lukesh JC 3rd. H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel), 2023, 12(3): 650. DOI:10.3390/antiox12030650 |
7. | Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(8): 1633-1646. DOI:10.1007/s00210-023-02469-7 |
8. | Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389. DOI:10.3390/molecules27113389 |
9. | Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9 |
10. | Zhang Y, Gong W, Xu M, et al. Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3. Int J Mol Sci, 2021, 22(21): 11893. DOI:10.3390/ijms222111893 |
11. | McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484. DOI:10.3390/jcm10163484 |
12. | Testai L, Brancaleone V, Flori L, et al. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel), 2021, 10(6): 910. DOI:10.3390/antiox10060910 |
13. | Wang WL, Ge TY, Chen X, et al. Advances in the Protective Mechanism of NO, H2S, and H2 in Myocardial Ischemic Injury. Front Cardiovasc Med, 2020, 7: 588206. DOI:10.3389/fcvm.2020.588206 |
14. | Denoix N, McCook O, Ecker S, et al. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel), 2020, 9(8): 748. DOI:10.3390/antiox9080748 |
15. | Pieretti JC, Junho CVC, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res, 2020, 161: 105121. DOI:10.1016/j.phrs.2020.105121 |
16. | Chen LJ, Ning JZ, Cheng F, et al. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci, 2020, 40(2): 332-338. DOI:10.1007/s11596-020-2180-6 |
17. | Yurinskaya MM, Krasnov GS, Kulikova DA, et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res, 2020, 69(5): 481-495. DOI:10.1007/s00011-020-01329-x |
18. | Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev, 2020, 2020: 4105382. DOI:10.1155/2020/4105382 |
19. | Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514. DOI:10.1016/j.trre.2019.100514 |
20. | Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res, 2019, 34(2): 94-102. DOI:10.7555/JBR.33.20190071 |
21. | Newton TD, Pluth MD. Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem Sci, 2019, 10(46): 10723-10727. DOI:10.1039/c9sc04616j |
22. | Luo H, Song S, Chen Y, et al. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev, 2019, 2019: 2193019. DOI:10.1155/2019/2193019 |
23. | Maassen H, Hendriks KDW, Venema LH, et al. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One, 2019, 14(11): e0225152. DOI:10.1371/journal.pone.0225152 |
24. | Chen Z, Tang J, Wang P, et al. GYY4137 Attenuates Sodium Deoxycholate-Induced Intestinal Barrier Injury Both In Vitro and In Vivo. Biomed Res Int, 2019, 2019: 5752323. DOI:10.1155/2019/5752323 |
25. | Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111. DOI:10.14744/AnatolJCardiol.2019.83648 |
26. | Van Dingenen J, Pieters L, Vral A, et al. The H2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol, 2019, 10: 116. DOI:10.3389/fphar.2019.00116 |
27. | Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888. DOI:10.2147/IJN.S186225 |
28. | Cao X, Zhang W, Moore PK, et al. Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci, 2019, 20(2): 313. DOI:10.3390/ijms20020313 |
29. | Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38. DOI:10.1089/ars.2017.7058 |
30. | Merz T, Lukaschewski B, Wigger D, et al. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp, 2018, 6(1): 41. DOI:10.1186/s40635-018-0207-0 |
31. | Zhang L, Wang Y, Li Y, et al. Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol, 2018, 9: 1066. DOI:10.3389/fphar.2018.01066 |
32. | Zhang Y, Liu X, Zhang L, et al. Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. Mol Ther Nucleic Acids, 2018, 13: 189-197. DOI:10.1016/j.omtn.2018.09.001 |
33. | Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel), 2018, 7(10): 129. DOI:10.3390/antiox7100129 |
34. | Woods JJ, Cao J, Lippert AR, et al. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J Am Chem Soc, 2018, 140(39): 12383-12387. DOI:10.1021/jacs.8b08695 |
35. | Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863. DOI:10.1007/s11325-018-1656-0 |
36. | Zeng C, Jiang W, Zheng R, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PLoS One, 2018, 13(3): e0193845. DOI:10.1371/journal.pone.0193845 |
37. | Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439. DOI:10.3892/etm.2017.5417 |
38. | Meng G, Zhao S, Xie L, et al. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol, 2018, 175(8): 1146-1156. DOI:10.1111/bph.13825 |
39. |
Peng Q, Wang X, Wu K, et al. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol, 2017, 10(7): 7707-7717.
![]() |
40. | Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol, 2017, 8: 810. DOI:10.3389/fphar.2017.00810 |
41. | Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev, 2017, 69(4): 497-564. DOI:10.1124/pr.117.014050 |
42. | Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930. DOI:10.12659/msm.902324 |
43. | Sun X, Wang W, Dai J, et al. A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury. Sci Rep, 2017, 7(1): 3541. DOI:10.1038/s41598-017-03941-0 |
44. | Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget, 2017, 8(19): 31888-31900. DOI:10.18632/oncotarget.16649 |
45. | Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal, 2017, 27(10): 634-653. DOI:10.1089/ars.2017.7096 |
46. | Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22(2): 295. DOI:10.3390/molecules22020295 |
47. | Bazhanov N, Escaffre O, Freiberg AN, et al. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep, 2017, 7: 41029. DOI:10.1038/srep41029 |
48. | Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385. DOI:10.3389/fphar.2016.00385 |
49. | Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371: 58-66. DOI:10.1016/j.tox.2016.10.001 |
50. | Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27. DOI:10.3389/fcvm.2016.00027 |
51. | Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119. DOI:10.1186/s12872-016-0294-3 |
52. | Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8. DOI:10.18632/oncotarget.7678 |
53. | Singh SB, Lin HC. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3(4): 866-89. DOI:10.3390/microorganisms3040866 |