Citation: | Kim Kee D., Duong Huy, Muzumdar Aditya, Hussain Mir, Moldavsky Mark, Bucklen Bandon. A novel technique for sacropelvic fixation using image-guided sacroiliac screws: a case series and biomechanical study[J]. The Journal of Biomedical Research, 2019, 33(3): 208-216. DOI: 10.7555/JBR.32.20170077 |
[1] |
Arnold PM, Baek PN, Bernardi RJ, et al. Surgical management of nontuberculous thoracic and lumbar vertebral osteomyelitis: report of 33 cases[J]. Surg Neurol, 1997, 47(6): 551-561. doi: 10.1016/S0090-3019(96)00242-X
|
[2] |
Kuklo TR, Bridwell KH, Lewis SJ, et al. Minimum 2-year analysis of sacropelvic fixation and L5-S1 fusion using S1 and iliac screws[J]. Spine (Phila Pa 1976), 2001, 26(18): 1976-1983. doi: 10.1097/00007632-200109150-00007
|
[3] |
Ozdemir MH, Gürkan I, Yildiz Y, et al. Surgical treatment of malignant tumours of the sacrum[J]. Eur J Surg Oncol, 1999, 25(1): 44-49. doi: 10.1053/ejso.1998.0598
|
[4] |
Farcy JP, Rawlins BA, Glassman SD. Technique and results of fixation to the sacrum with iliosacral screws[J]. Spine (Phila Pa 1976), 1992, 17(S6): S190-S195. http://cn.bing.com/academic/profile?id=2c8250a24f25d339a3820be94172d40d&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
Louis R. Fusion of the lumbar and sacral spine by internal fixation with screw plates[J]. Clin Orthop Relat Res, 1986, (203): 18-33. http://cn.bing.com/academic/profile?id=fab165c243af87127208fa8138c78b61&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
Tsuchiya K, Bridwell KH, Kuklo TR, et al. Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity[J]. Spine (Phila Pa 1976), 2006, 31(3): 303-308. doi: 10.1097/01.brs.0000197193.81296.f1
|
[7] |
Goel VK, Panjabi MM, Patwardhan AG, et al. Test protocols for evaluation of spinal implants[J]. J Bone Joint Surg Am, 2006, 88(S2): 103-109. http://cn.bing.com/academic/profile?id=18e5f97b61274590f8805c30a93091d3&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
Moon SM, Ingalhalikar A, Highsmith J M, et al. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model[J]. Spine J, 2009, 9(4): 330-335. doi: 10.1016/j.spinee.2008.11.012
|
[9] |
McCord DH, Cunningham BW, Shono Y, et al. Biomechanical analysis of lumbosacral fixation[J]. Spine (Phila Pa 1976), 1992, 17(S8): S235-S243. doi: 10.1097-00007632-199605150-00015/
|
[10] |
Gautier E, Bächler R, Heini PF, et al. Accuracy of computerguided screw fixation of the sacroiliac joint[J]. Clin Orthop Relat Res, 2001, (393): 310-317. doi: 10.1097-00003086-200112000-00036/
|
[11] |
Hinsche AF, Giannoudis PV, Smith RM. Fluoroscopy-based multiplanar image guidance for insertion of sacroiliac screws[J]. Clin Orthop Relat Res, 2002, (395): 135-144. doi: 10.1097-00003086-200202000-00014/
|
[12] |
Moed BR, Geer BL. S2 iliosacral screw fixation for disruptions of the posterior pelvic ring: a report of 49 cases[J]. J Orthop Trauma, 2006, 20(6): 378-383. doi: 10.1097/00005131-200607000-00002
|
[13] |
Routt ML Jr, Simonian PT, Mills WJ. Iliosacral screw fixation: early complications of the percutaneous technique[J]. J Orthop Trauma, 1997, 11(8): 584-589. doi: 10.1097/00005131-199711000-00007
|
[14] |
Smith HE, Yuan PS, Sasso R, et al. An evaluation of imageguided technologies in the placement of percutaneous iliosacral screws[J]. Spine (Phila Pa 1976), 2006, 31(2): 234-238. doi: 10.1097/01.brs.0000194788.45002.1b
|
[15] |
Tonetti J, Carrat L, Lavalleé S, et al. Percutaneous iliosacral screw placement using image guided techniques[J]. Clin Orthop Relat Res, 1998, (354): 103-110. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210458298/
|
[16] |
Smith JA, Deviren V, Berven S, et al. Clinical outcome of transsacral interbody fusion after partial reduction for high-grade l5- s1 spondylolisthesis[J]. Spine (Phila Pa 1976), 2001, 26(20): 2227-2234. doi: 10.1097/00007632-200110150-00014
|
[17] |
Alegre GM, Gupta MC, Bay BK, et al. S1 screw bending moment with posterior spinal instrumentation across the lumbosacral junction after unilateral iliac crest harvest[J]. Spine (Phila Pa 1976), 2001, 26(18): 1950-1955. doi: 10.1097/00007632-200109150-00003
|
[18] |
Cunningham BW, Lewis SJ, Long J, et al. Biomechanical evaluation of lumbosacral reconstruction techniques for spondylolisthesis: an in vitro porcine model[J]. Spine (Phila Pa 1976), 2002, 27(21): 2321-2327. doi: 10.1097/00007632-200211010-00004
|
[19] |
Ebraheim NA, Xu R, Biyani A, et al. Morphologic considerations of the first sacral pedicle for iliosacral screw placement[J]. Spine (Phila Pa 1976), 1997, 22(8): 841-846. doi: 10.1097/00007632-199704150-00002
|
[20] |
Akesen B, Wu C, Mehbod AA, et al. Revision of loosened iliac screws: a biomechanical study of longer and bigger screws[J]. Spine (Phila Pa 1976), 2008, 33(13): 1423-1428. doi: 10.1097/BRS.0b013e3181753c04
|
[21] |
Allen BL Jr, Ferguson RLA. A 1988 perspective on the Galveston technique of pelvic fixation[J]. Orthop Clin North Am, 1988, 19(2): 409-418. http://cn.bing.com/academic/profile?id=b5f4b8c992fa74b0c0af7bf83c364382&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
Bridwell KH. Utilization of iliac screws and structural interbody grafting for revision spondylolisthesis surgery[J]. Spine (Phila Pa 1976), 2005, 30(S6): S88-S96. doi: 10.1097-01.brs.0000155562.60754.62/
|
[23] |
Jackson RJ, Gokaslan ZL. Spinal-pelvic fixation in patients with lumbosacral neoplasms[J]. J Neurosurg, 2000, 92(1 Suppl): 61-70. http://cn.bing.com/academic/profile?id=6168dd9c3f157954501590923261b217&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
Jackson RP, McManus AC. The iliac buttress. A computed tomographic study of sacral anatomy[J]. Spine (Phila Pa 1976), 1993, 18(10): 1318-1328. doi: 10.1097/00007632-199308000-00011
|
[25] |
Emami A, Deviren V, Berven S, et al. Outcome and complications of long fusions to the sacrum in adult spine deformity: luque-galveston, combined iliac and sacral screws, and sacral fixation[J]. Spine (Phila Pa 1976), 2002, 27(7): 776-786. doi: 10.1097/00007632-200204010-00017
|
[26] |
Schildhauer TA, McCulloch P, Chapman JR, et al. Anatomic and radiographic considerations for placement of transiliac screws in lumbopelvic fixations[J]. J Spinal Disord Tech, 2002, 15(3): 199-205. doi: 10.1097/00024720-200206000-00005
|
[27] |
Chang TL, Sponseller PD, Kebaish KM, et al. Low profile pelvic fixation: anatomic parameters for sacral alar-iliac fixation versus traditional iliac fixation[J]. Spine (Phila Pa 1976), 2009, 34(5): 436-440. doi: 10.1097/BRS.0b013e318194128c
|
[28] |
O'Brien JR, Matteini L, Yu WD, et al. Feasibility of minimally invasive sacropelvic fixation: percutaneous S2 alar iliac fixation[J]. Spine (Phila Pa 1976), 2010, 35(4): 460-464. doi: 10.1097/BRS.0b013e3181b95dca
|
[29] |
Kim YJ, Bridwell KH, Lenke LG, et al. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases[J]. Spine (Phila Pa 1976), 2006, 31(20): 2329-2336. doi: 10.1097/01.brs.0000238968.82799.d9
|
[1] | Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040 |
[2] | Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091 |
[3] | Qiu Jinchun, Guo Hongli, Li Ling, Xu Zeyue, Xu Zejun, Jing Xia, Hu Yahui, Wen Xiaoyi, Chen Feng, Lu Xiaopeng. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy— a pilot longitudinal study[J]. The Journal of Biomedical Research, 2021, 35(1): 61-67. DOI: 10.7555/JBR.34.20200057 |
[4] | Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027 |
[5] | Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162 |
[6] | So-Hye Hong, Jae-Eon Lee, Hong Sung Kim, Young-Jin Jung, DaeYoun Hwang, Jae Ho Lee, Seung Yun Yang, Seung-Chul Kim, Seong-Keun Cho, Beum-Soo An. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes[J]. The Journal of Biomedical Research, 2016, 30(3): 203-208. DOI: 10.7555/JBR.30.2016K0012 |
[7] | Rezvan Hashemi, Sakineh Shab Bidar, Moloud Payab, Ramin Heshmat, Ahmad Reza Dorosti-Motlagh. Urgent need of vitamin D supplementation among Iranian elderly: a cross-sectional study[J]. The Journal of Biomedical Research, 2014, 28(6): 509-512. DOI: 10.7555/JBR.28.20140089 |
[8] | Nuan Wang, Xianming Chen, Deqin Geng, Hongli Huang, Hao Zhou. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia[J]. The Journal of Biomedical Research, 2013, 27(1): 29-36. DOI: 10.7555/JBR.27.20120047 |
[9] | Min Zhang, Yan Zhang, Shuaishuai Zhu, Xiaoyu Li, Qing Yang, Hui Bai, Qi Chen. Genetic variants of the class A scavenger receptor gene are associated with coronary artery disease in Chinese[J]. The Journal of Biomedical Research, 2012, 26(6): 418-424. DOI: 10.7555/JBR.26.20110116 |
[10] | Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106. |
1. | Boda VK, Yasmen N, Jiang J, et al. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev, 2024, 44(6): 2510-2544. DOI:10.1002/med.22048 |
2. | Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel), 2023, 15(20): 4920. DOI:10.3390/cancers15204920 |
3. | Zhou Y, Pereira G, Tang Y, et al. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics, 2023, 15(6): 1691. DOI:10.3390/pharmaceutics15061691 |
4. | Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist, 2022, 5(4): 850-872. DOI:10.20517/cdr.2022.20 |
5. | Gal O, Betzer O, Rousso-Noori L, et al. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. J Nanotheranostics, 2022, 3(4): 177-188. DOI:10.3390/jnt3040012 |
6. | Scioli MG, Terriaca S, Fiorelli E, et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci, 2021, 22(19): 10572. DOI:10.3390/ijms221910572 |
7. | Keyvani-Ghamsari S, Khorsandi K, Rasul A, et al. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics, 2021, 13(1): 120. DOI:10.1186/s13148-021-01107-4 |
8. | Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci, 2020, 6(3): 341. DOI:10.15761/jts.1000341 |
9. | Chandimali N, Koh H, Kim J, et al. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett, 2020, 20(4): 103. DOI:10.3892/ol.2020.11964 |
10. | Mukherjee S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep, 2020, 10(1): 10937. DOI:10.1038/s41598-020-67753-5 |
11. | Zhou JJ, Xiao Y, Li H, et al. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci, 2020, 17(6): 799-806. DOI:10.7150/ijms.43832 |
12. | Sun Z, Wang L, Zhou Y, et al. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol, 2020, 40(5): 767-784. DOI:10.1007/s10571-019-00771-8 |
13. | Zhang Q, Xu B, Chen J, et al. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal, 2020, 34(3): e23082. DOI:10.1002/jcla.23082 |
14. | Megías J, Martínez A, San-Miguel T, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs, 2020, 38(2): 299-310. DOI:10.1007/s10637-019-00788-2 |
15. | Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 139. DOI:10.1186/s13046-019-1134-y |
16. | Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med, 2018, 7(1): 33. DOI:10.1186/s40169-018-0211-8 |
17. | Grande S, Palma A, Ricci-Vitiani L, et al. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs. Stem Cells Int, 2018, 2018: 3292704. DOI:10.1155/2018/3292704 |
18. | Zuccarini M, Giuliani P, Ziberi S, et al. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2): 105. DOI:10.3390/genes9020105 |
19. | Bhere D, Tamura K, Wakimoto H, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol, 2018, 20(2): 215-224. DOI:10.1093/neuonc/nox138 |
20. | Lee S, Kwon MC, Jang JP, et al. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol, 2017, 51(2): 414-424. DOI:10.3892/ijo.2017.4054 |
21. | Jovčevska I, Zupanec N, Urlep Ž, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8(27): 44141-44158. DOI:10.18632/oncotarget.17390 |
22. | Hiramatsu H, Kobayashi K, Kobayashi K, et al. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep, 2017, 7(1): 889. DOI:10.1038/s41598-017-00982-3 |
23. | Zheng X, Pang B, Gu G, et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int J Biol Sci, 2017, 13(2): 245-253. DOI:10.7150/ijbs.16818 |
24. | Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg, 2017, 127(6): 1219-1230. DOI:10.3171/2016.8.JNS161197 |
25. | Majewska E, Szeliga M. AKT/GSK3β Signaling in Glioblastoma. Neurochem Res, 2017, 42(3): 918-924. DOI:10.1007/s11064-016-2044-4 |
26. | Kanabur P, Guo S, Simonds GR, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7(52): 86406-86419. DOI:10.18632/oncotarget.13415 |
27. | Wang K, Kievit FM, Erickson AE, et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater, 2016, 5(24): 3173-3181. DOI:10.1002/adhm.201600684 |