4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
Citation: Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170

Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (81100977).

More Information
  • Received Date: December 19, 2016
  • Revised Date: January 21, 2018
  • The present study aimed to develop and optimize chitosan coated solid lipid nanoparticles (chitosan-SLNs) encapsulated with methazolamide. Chitosan-SLNs were successfully prepared by a modified oil-in-water emulsification-solvent evaporation method with glyceryl monostearate as the solid lipid and phospholipid as the surfactant. Systematic screening of formulation factors was carried out. The optimized formula for preparation was screened by orthogonal design as well as Box-Behnken design with entrapment efficiency, particle size and zeta potential as the indexes. The entrapment efficiency of the optimized formulation (methazolamide-chitosan-SLNs) prepared was (58.5 ± 4.5)%, particle size (247.7 ± 17.3) nm and zeta potential (33.5 ± 3.9) mV. Transmission electronmicroscopy showed homogeneous spherical particles in the nanometer range. A prolonged methazolamide in vitro release profile was obtained in the optimized chitosan-SLNs suspension compared with methazolamide solution. No ocular damages were observed in the susceptibility test on albino rabbits. The results suggest that the combination of orthogonal design and Box-Behnken design is efficient and reliable in the optimization of nanocarriers, and chitosanSLNs is a potential carrier for ophthalmic administration.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Fangyuan Li, Yaohui Wang, Xiaochun Ping, Jiani C. Yin, Fufeng Wang, Xian Zhang, Xiang Li, Jing Zhai, Lizong Shen. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240118
    [3]Adittya Arefin, Tanzila Ismail Ema, Tamnia Islam, Md. Saddam Hossen, Tariqul Islam, Salauddin Al Azad, Md. Nasir Uddin Badal, Md. Aminul Islam, Partha Biswas, Nafee Ul Alam, Enayetul Islam, Maliha Anjum, Afsana Masud, Md. Shaikh Kamran, Ahsab Rahman, Parag Kumar Paul. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach[J]. The Journal of Biomedical Research, 2021, 35(6): 459-473. DOI: 10.7555/JBR.35.20210111
    [4]Hae Rim Lee, Bon-Sang Koo, Eun-Ok Jeon, Moo-Sung Han, Kyung-Cheol Min, Seung Baek Lee, Yeonji Bae, In-Pil Mo. Pathology and molecular characterization of recent Leucocytozoon caulleryi cases in layer flocks[J]. The Journal of Biomedical Research, 2016, 30(6): 517-524. DOI: 10.7555/JBR.30.2016K0017
    [5]Salam Pradeep Singh, Chitta Ranjan Deb, Sharif Udin Ahmed, Yenisetti Saratchandra, Bolin Kumar Konwar. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90[J]. The Journal of Biomedical Research, 2016, 30(1): 67-74. DOI: 10.7555/JBR.30.20130158
    [6]Sahitya K Denduluri, Zhongliang Wang, Zhengjian Yan, Jing Wang, Qiang Wei, Maryam K Mohammed, Rex C Haydon, Hue H Luu, Tong-Chuan He. Molecular pathogenesis and therapeutic strategies of human osteosarcoma[J]. The Journal of Biomedical Research, 2016, 30(1): 5-18. DOI: 10.7555/JBR.30.20150075
    [7]Talambedu Usha, Sushil Kumar Middha, Arvind Kumar Goyal, Mahesh Karthik, DA Manoj, Syed Faizan, Peyush Goyal, HP Prashanth, Veena Pande. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia[J]. The Journal of Biomedical Research, 2014, 28(5): 406-415. DOI: 10.7555/JBR.28.20130110
    [8]Meilin Wang, Haiyan Chu, Zhengdong Zhang, Qingyi Wei. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 179-192. DOI: 10.7555/JBR.27.20130034
    [9]Daniel G Rosen, Zhihong Zhang, Weiwei Shan, Jinsong Liu. Morphological and molecular basis of ovarian serous carcinoma[J]. The Journal of Biomedical Research, 2010, 24(4): 257-263. DOI: 10.1016/S1674-8301(10)60036-X
    [10]Aarti Ruparelia, Frances Wiseman, Olivia Sheppard, Victor L.J. Tybulewicz, Elizabeth M.C. Fisher. Down syndrome and the molecular pathogenesis resulting from trisomy of human chromosome 21[J]. The Journal of Biomedical Research, 2010, 24(2): 87-99.
  • Cited by

    Periodical cited type(3)

    1. Singh S, Malhotra AG, Jha M, et al. Implications of protein conformations to modifying novel inhibitor Oseltamivir for 2009 H1N1 influenza A virus by simulation and docking studies. Virusdisease, 2018, 29(4): 461-467. DOI:10.1007/s13337-018-0480-2
    2. Nasution MAF, Toepak EP, Alkaff AH, et al. Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): a computational approach to discover new drug for combating Ebola. BMC Bioinformatics, 2018, 19(Suppl 14): 419. DOI:10.1186/s12859-018-2387-8
    3. Tambunan US, Zahroh H, Parikesit AA, et al. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2. Drug Target Insights, 2015, 9: 33-49. DOI:10.4137/DTI.S31566

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3366) PDF downloads (184) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return