1. |
Boda VK, Yasmen N, Jiang J, et al. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev, 2024, 44(6): 2510-2544.
DOI:10.1002/med.22048
|
2. |
Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel), 2023, 15(20): 4920.
DOI:10.3390/cancers15204920
|
3. |
Zhou Y, Pereira G, Tang Y, et al. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics, 2023, 15(6): 1691.
DOI:10.3390/pharmaceutics15061691
|
4. |
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist, 2022, 5(4): 850-872.
DOI:10.20517/cdr.2022.20
|
5. |
Gal O, Betzer O, Rousso-Noori L, et al. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. J Nanotheranostics, 2022, 3(4): 177-188.
DOI:10.3390/jnt3040012
|
6. |
Scioli MG, Terriaca S, Fiorelli E, et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci, 2021, 22(19): 10572.
DOI:10.3390/ijms221910572
|
7. |
Keyvani-Ghamsari S, Khorsandi K, Rasul A, et al. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics, 2021, 13(1): 120.
DOI:10.1186/s13148-021-01107-4
|
8. |
Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci, 2020, 6(3): 341.
DOI:10.15761/jts.1000341
|
9. |
Chandimali N, Koh H, Kim J, et al. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett, 2020, 20(4): 103.
DOI:10.3892/ol.2020.11964
|
10. |
Mukherjee S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep, 2020, 10(1): 10937.
DOI:10.1038/s41598-020-67753-5
|
11. |
Zhou JJ, Xiao Y, Li H, et al. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci, 2020, 17(6): 799-806.
DOI:10.7150/ijms.43832
|
12. |
Sun Z, Wang L, Zhou Y, et al. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol, 2020, 40(5): 767-784.
DOI:10.1007/s10571-019-00771-8
|
13. |
Zhang Q, Xu B, Chen J, et al. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal, 2020, 34(3): e23082.
DOI:10.1002/jcla.23082
|
14. |
Megías J, Martínez A, San-Miguel T, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs, 2020, 38(2): 299-310.
DOI:10.1007/s10637-019-00788-2
|
15. |
Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 139.
DOI:10.1186/s13046-019-1134-y
|
16. |
Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med, 2018, 7(1): 33.
DOI:10.1186/s40169-018-0211-8
|
17. |
Grande S, Palma A, Ricci-Vitiani L, et al. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs. Stem Cells Int, 2018, 2018: 3292704.
DOI:10.1155/2018/3292704
|
18. |
Zuccarini M, Giuliani P, Ziberi S, et al. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2): 105.
DOI:10.3390/genes9020105
|
19. |
Bhere D, Tamura K, Wakimoto H, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol, 2018, 20(2): 215-224.
DOI:10.1093/neuonc/nox138
|
20. |
Lee S, Kwon MC, Jang JP, et al. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol, 2017, 51(2): 414-424.
DOI:10.3892/ijo.2017.4054
|
21. |
Jovčevska I, Zupanec N, Urlep Ž, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8(27): 44141-44158.
DOI:10.18632/oncotarget.17390
|
22. |
Hiramatsu H, Kobayashi K, Kobayashi K, et al. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep, 2017, 7(1): 889.
DOI:10.1038/s41598-017-00982-3
|
23. |
Zheng X, Pang B, Gu G, et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int J Biol Sci, 2017, 13(2): 245-253.
DOI:10.7150/ijbs.16818
|
24. |
Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg, 2017, 127(6): 1219-1230.
DOI:10.3171/2016.8.JNS161197
|
25. |
Majewska E, Szeliga M. AKT/GSK3β Signaling in Glioblastoma. Neurochem Res, 2017, 42(3): 918-924.
DOI:10.1007/s11064-016-2044-4
|
26. |
Kanabur P, Guo S, Simonds GR, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7(52): 86406-86419.
DOI:10.18632/oncotarget.13415
|
27. |
Wang K, Kievit FM, Erickson AE, et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater, 2016, 5(24): 3173-3181.
DOI:10.1002/adhm.201600684
|