4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ahmad R. Safa, Mohammad Reza Saadatzadeh, Aaron A. Cohen-Gadol, Karen E. Pollok, Khadijeh Bijangi-Vishehsaraei. Emerging targets for glioblastoma stem cell therapy[J]. The Journal of Biomedical Research, 2016, 30(1): 19-31. DOI: 10.7555/JBR.30.20150100
Citation: Ahmad R. Safa, Mohammad Reza Saadatzadeh, Aaron A. Cohen-Gadol, Karen E. Pollok, Khadijeh Bijangi-Vishehsaraei. Emerging targets for glioblastoma stem cell therapy[J]. The Journal of Biomedical Research, 2016, 30(1): 19-31. DOI: 10.7555/JBR.30.20150100

Emerging targets for glioblastoma stem cell therapy

Funds: 

the National Cancer Institute of the National Institutes of Health under award number RO1CA138798 (KP), the Riley Children's Foundation, the Jeff Gordon Children's Foundation (KP), and the support of the IUPUI Signature Center Initiative for the Cure of Glioblastoma

More Information
  • Received Date: July 13, 2015
  • Revised Date: July 26, 2015
  • Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/b-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Vitaly Chasov, Damir Davletshin, Elvina Gilyazova, Regina Mirgayazova, Anna Kudriaeva, Raniya Khadiullina, Youyong Yuan, Emil Bulatov. Anticancer therapeutic strategies for targeting mutant p53-Y220C[J]. The Journal of Biomedical Research, 2024, 38(3): 222-232. DOI: 10.7555/JBR.37.20230093
    [3]Qing Chen, Meiheng Sun, Xu Han, Hongfei Xu, Yongjian Liu. Structural determinants specific for retromer protein sorting nexin 5 in regulating subcellular retrograde membrane trafficking[J]. The Journal of Biomedical Research, 2023, 37(6): 492-506. DOI: 10.7555/JBR.37.20230112
    [4]Minqin Xu, Lihua Zhang, Lan Lin, Zhiyi Qiang, Wei Liu, Jian Yang. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1[J]. The Journal of Biomedical Research, 2023, 37(6): 431-447. DOI: 10.7555/JBR.37.20230047
    [5]Xiaochen Huang, Jiaojiao Guo, Tao Li, Lizhou Jia, Xiaojun Tang, Jin Zhu, Qi Tang, Zhenqing Feng. c-Met-targeted chimeric antigen receptor T cells inhibit hepatocellular carcinoma cells in vitro and in vivo[J]. The Journal of Biomedical Research, 2022, 36(1): 10-21. DOI: 10.7555/JBR.35.20200207
    [6]Adittya Arefin, Tanzila Ismail Ema, Tamnia Islam, Md. Saddam Hossen, Tariqul Islam, Salauddin Al Azad, Md. Nasir Uddin Badal, Md. Aminul Islam, Partha Biswas, Nafee Ul Alam, Enayetul Islam, Maliha Anjum, Afsana Masud, Md. Shaikh Kamran, Ahsab Rahman, Parag Kumar Paul. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach[J]. The Journal of Biomedical Research, 2021, 35(6): 459-473. DOI: 10.7555/JBR.35.20210111
    [7]Sun Meihen, Han Xu, Chang Fei, Xu Hongfei, Colgan Lesley, Liu Yongjian. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells[J]. The Journal of Biomedical Research, 2021, 35(5): 339-350. DOI: 10.7555/JBR.34.20200095
    [8]Min Feng, Xin Hu, Na Li, Fan Hu, Fei Chang, Hongfei Xu, Yongjian Liu. Distinctive roles of Rac1 and Rab29 in LRRK2 mediated membrane trafficking and neurite outgrowth[J]. The Journal of Biomedical Research, 2018, 32(2): 145-156. DOI: 10.7555/JBR.31.20170039
    [9]Qiuzi Wu, Hongfei Xu, Wei Wang, Fei Chang, Yu Jiang, Yongjian Liu. Retrograde trafficking of VMAT2 and its role in protein stability in non-neuronal cells[J]. The Journal of Biomedical Research, 2016, 30(6): 502-509. DOI: 10.7555/JBR.30.20160061
    [10]Oluyomi S. Adeyemi, Faoziyat A. Sulaiman. Evaluation of metal nanoparticles for drug delivery systems[J]. The Journal of Biomedical Research, 2015, 29(2): 145-149. DOI: 10.7555/JBR.28.20130096

Catalog

    Article Metrics

    Article views (4644) PDF downloads (727) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return