4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jiliang Zhou. An emerging role for Hippo-YAP signaling in cardiovascular development[J]. The Journal of Biomedical Research, 2014, 28(4): 251-254. DOI: 10.7555/JBR.28.20140020
Citation: Jiliang Zhou. An emerging role for Hippo-YAP signaling in cardiovascular development[J]. The Journal of Biomedical Research, 2014, 28(4): 251-254. DOI: 10.7555/JBR.28.20140020

An emerging role for Hippo-YAP signaling in cardiovascular development

Funds: 

This study was supported by a grant (No. R01HL109605) from the National Heart, Lung, and Blood Institute, NIH.

More Information
  • Received Date: February 03, 2014
  • The Hippo signaling pathway was originally discovered in Drosophila and shown to be critical for organ size control and tumorigenesis. This pathway consists of a cascade of kinases and several adaptors that lead to the phosphorylation and inhibition, through nuclear exclusion, of the transcriptional cofactor Yorkie in Drosophila or YAP (yes associated protein) in mammals. Recent studies demonstrate that cardiac-specific deletion of the Hippo pathway kinase Mst (STE20-like protein kinases) co-activator WW45 (WW domain-containing adaptor 45), Mst1, Mst2, or Lats2 (large tumor suppressor homologue 2) in mice result in over-grown hearts with elevated cardiomyocyte proliferation. Consistent with these observations, over-expression of YAP in the mouse embryonic heart increases heart size and promotes cardiac regeneration and contractility after myocardial infarction by inducing cardiomyocyte proliferation, whereas deletion of YAP in the mouse heart impedes cardiomyocyte proliferation, causing myocardial hypoplasia and embryonic or premature lethality. YAP has also been shown to play an important role in the vascular system. Specific-deletion of YAP from vascular smooth muscle cells in mice results in aberrant development of large arteries with a hypoplastic arterial wall phenotype. Hippo-YAP signaling cross-talks with other signaling pathways such as IGF (insulin-like growth factor) and Wnt signaling to promote heart growth by increasing expression of cell cycle genes. The purpose of this review is to summarize these recent findings and discuss potential diagnostic or therapeutic strategies in cardiovascular system based on manipulating the Hippo-YAP signaling.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Alexey N. Inyushkin, Vitalii S. Poletaev, Elena M. Inyushkina, Igor S. Kalberdin, Andrey A. Inyushkin. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review[J]. The Journal of Biomedical Research, 2024, 38(1): 1-16. DOI: 10.7555/JBR.37.20230133
    [3]Zhu Chenchen, Jiang Haonan, Deng Wenjie, Zhao Shuo, Li Kaiquan, Wang Yuting, Wei Qinjun, Du Jun. Activation of p38/HSP27 pathway counters melatonin-induced inhibitory effect on proliferation of human gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(5): 317-324. DOI: 10.7555/JBR.33.20180066
    [4]Xu Yuyu, Wang Pengqi, Xu Chaoqi, Shan Xiaoyun, Feng Qing. Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression[J]. The Journal of Biomedical Research, 2019, 33(3): 181-191. DOI: 10.7555/JBR.31.20170016
    [5]Lintao Wang, Yanyan Peng, Kaikai Shi, Haixiao Wang, Jianlei Lu, Yanli Li, Changyan Ma. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis[J]. The Journal of Biomedical Research, 2015, 29(2): 132-138. DOI: 10.7555/JBR.27.20120115
    [6]Ning Shi, Shi-You Chen. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J]. The Journal of Biomedical Research, 2014, 28(1): 40-46. DOI: 10.7555/JBR.28.20130130
    [7]Xiwen Zhang, Yao Wang, Weiwei Yang, Xiaofeng Hou, Jiangang Zou, Kejiang Cao. Resveratrol inhibits angiotensin II -induced ERK1/2 activation by downregulating quinone reductase 2 in rat vascular smooth muscle cells[J]. The Journal of Biomedical Research, 2012, 26(2): 103-109. DOI: 10.1016/S1674-8301(12)60019-0
    [8]Xiangrong Zuo, Feng Zong, Hui Wang, Qiang Wang, Weiping Xie, Hong Wang. Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α[J]. The Journal of Biomedical Research, 2011, 25(6): 392-401. DOI: 10.1016/S1674-8301(11)60052-3
    [9]Ping Li, Xiaoming Lu, Yingyi Wang, Lihua Sun, Chunfa Qian, Wei Yan, Ning Liu, Yongping You, Zhen Fu. MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells[J]. The Journal of Biomedical Research, 2010, 24(6): 436-443. DOI: 10.1016/S1674-8301(10)60058-9
    [10]Zhengxian Tao, Bo Chen, Yingming Zhao, Hongwu Chen, Liansheng Wang, Yonghong Yong, Kejiang Cao, Qifeng Yu, Danian Ke, Hua Wang, Zuze Wu, Zhijian Yang. HGF percutaneous endocardial injection induces cardiomyocyte proliferation and rescues cardiac function in pigs[J]. The Journal of Biomedical Research, 2010, 24(3): 198-206.

Catalog

    Article Metrics

    Article views (4092) PDF downloads (1111) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return