4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Yao Liu, Qin Zhang, Chuanli Ren, Yanbing Ding, Guangfu Jin, Zhibin Hu, Yaochu Xu, Hongbing Shen. A germline variant N375S in MET and gastric cancer susceptibility in a Chinese population[J]. The Journal of Biomedical Research, 2012, 26(5): 315-318. DOI: 10.7555/JBR.26.20110087
Citation: Yao Liu, Qin Zhang, Chuanli Ren, Yanbing Ding, Guangfu Jin, Zhibin Hu, Yaochu Xu, Hongbing Shen. A germline variant N375S in MET and gastric cancer susceptibility in a Chinese population[J]. The Journal of Biomedical Research, 2012, 26(5): 315-318. DOI: 10.7555/JBR.26.20110087

A germline variant N375S in MET and gastric cancer susceptibility in a Chinese population

Funds: 

National Natural Science Foundation of China (No. 81001276 and No. 81072380) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

More Information
  • MET tyrosine kinase and its ligand, hepatocyte growth factor (HGF), play a pivotal role in the activties of tumor cells. A germline missense variant in exon 2 of the MET gene, N375S (rs33917957 A>G), may alter the binding affinity of MET for HGF and thus modify the risk of tumorigenesis. In this study, we performed a case-control study to assess the association between N375S and gastric cancer risk in 1,681 gastric cancer cases and 1,858 cancer-free controls. Logistic regression analysis was applied to estimate crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between genotypes and gastric cancer risk. We found that MET N375S variant genotypes (NS/SS) were associated with a significantly decreased risk of gastric cancer (OR = 0.78, 95% CI = 0.63-0.96, P = 0.021) compared with the wildtype homozygote (NN). The finding indicates that this germline variant in MET may decrease gastric cancer susceptibility in Han Chinese.
  • Related Articles

    [1]Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040
    [2]Mengfan Guo, Jingyuan Liu, Yujuan Zhang, Jingjing Gu, Junyi Xin, Mulong Du, Haiyan Chu, Meilin Wang, Hanting Liu, Zhengdong Zhang. Genetic variants in C1GALT1 are associated with gastric cancer risk by influencing immune infiltration[J]. The Journal of Biomedical Research, 2024, 38(4): 348-357. DOI: 10.7555/JBR.37.20230161
    [3]Kai Chang, Wanlin Na, Chenxia Liu, Hongxuan Xu, Yuan Liu, Yanyan Wang, Zhongyong Jiang. Peripheral CD4+CD8+ double positive T cells: A potential marker to evaluate renal impairment susceptibility during systemic lupus erythematosus[J]. The Journal of Biomedical Research, 2023, 37(1): 59-68. DOI: 10.7555/JBR.36.20220094
    [4]Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091
    [5]Haiyan Chu, Meilin Wang, Zhengdong Zhang. Bladder cancer epidemiology and genetic susceptibility[J]. The Journal of Biomedical Research, 2013, 27(3): 170-178. DOI: 10.7555/JBR.27.20130026
    [6]Di Liu, Peng Xia, Dongmei Diao, Yao Cheng, Hao Zhang, Dawei Yuan, Chen Huang, Chengxue Dang. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. The Journal of Biomedical Research, 2012, 26(5): 389-393. DOI: 10.7555/JBR.26.20120029
    [7]Qi Zheng, Kejun Nan, Yu Yao. Gastric cancer presenting with solitary gigantic pelvic metastasis[J]. The Journal of Biomedical Research, 2012, 26(4): 303-306. DOI: 10.7555/JBR.26.20110056
    [8]Xiaojun Chen, Jie Jiang, Hongbing Shen, Zhibin Hu. Genetic susceptibility of cervical cancer[J]. The Journal of Biomedical Research, 2011, 25(3): 155-164. DOI: 10.1016/S1674-8301(11)60020-1
    [9]Li Liu, Qi Chen, Rensheng Lai, Xiaobin Wu, Xiaoyu Wu, Fukun Liu, Guohua Xu, Yong Ji. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer[J]. The Journal of Biomedical Research, 2010, 24(3): 187-197.
    [10]Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106.
  • Cited by

    Periodical cited type(45)

    1. Hou W, Guan F, Chen W, et al. Breastfeeding, genetic susceptibility, and the risk of asthma and allergic diseases in children and adolescents: a retrospective national population-based cohort study. BMC Public Health, 2024, 24(1): 3056. DOI:10.1186/s12889-024-20501-0
    2. Nandi S, Varotariya K, Luhana S, et al. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics, 2024, 24(6): 203. DOI:10.1007/s10142-024-01477-x
    3. Sung HL, Lin WY. Causal effects of cardiovascular health on five epigenetic clocks. Clin Epigenetics, 2024, 16(1): 134. DOI:10.1186/s13148-024-01752-5
    4. Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254
    5. Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602
    6. Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6
    7. Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207
    8. Han J, Zhang L, Yan R, et al. CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer. Genes (Basel), 2023, 14(3): 586. DOI:10.3390/genes14030586
    9. Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081
    10. Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8
    11. Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424. DOI:10.1186/s12967-022-03637-8
    12. Shao Z, Wang T, Qiao J, et al. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies. BMC Bioinformatics, 2022, 23(1): 359. DOI:10.1186/s12859-022-04897-3
    13. Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388. DOI:10.1111/jfd.13668
    14. Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2
    15. Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004. DOI:10.1093/bioadv/vbab004
    16. Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604
    17. Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314. DOI:10.1186/s12916-021-02186-z
    18. Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080. DOI:10.3390/cells10113080
    19. Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418. DOI:10.1186/s12967-021-03090-z
    20. Gao Y, Zhang J, Zhao H, et al. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet, 2021, 12: 651332. DOI:10.3389/fgene.2021.651332
    21. Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624. DOI:10.1093/advances/nmab045
    22. Muneeb M, Henschel A. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods. BMC Bioinformatics, 2021, 22(1): 198. DOI:10.1186/s12859-021-04077-9
    23. O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367. DOI:10.1007/978-1-0716-1138-8_19
    24. Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Comput Struct Biotechnol J, 2021, 19: 1579-1594. DOI:10.1016/j.csbj.2021.03.008
    25. Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545. DOI:10.3389/fgene.2021.656545
    26. McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z
    27. Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6. DOI:10.1186/s13073-020-00820-8
    28. Ramanan VK, Wang X, Przybelski SA, et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun, 2020, 2(2): fcaa159. DOI:10.1093/braincomms/fcaa159
    29. Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461. DOI:10.3389/fgene.2020.592461
    30. Xiao L, Yuan Z, Jin S, et al. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet, 2020, 11: 587243. DOI:10.3389/fgene.2020.587243
    31. Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228. DOI:10.3390/nu12082228
    32. Kuo TT, Jiang X, Tang H, et al. iDASH secure genome analysis competition 2018: blockchain genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics, 2020, 13(Suppl 7): 98. DOI:10.1186/s12920-020-0715-0
    33. Padilla-Martínez F, Collin F, Kwasniewski M, et al. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci, 2020, 21(5): 1703. DOI:10.3390/ijms21051703
    34. Lan T, Yang B, Zhang X, et al. Statistical Methods and Software for Substance Use and Dependence Genetic Research. Curr Genomics, 2019, 20(3): 172-183. DOI:10.2174/1389202920666190617094930
    35. Gaudillo J, Rodriguez JJR, Nazareno A, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One, 2019, 14(12): e0225574. DOI:10.1371/journal.pone.0225574
    36. Romagnoni A, Jégou S, Van Steen K, et al. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep, 2019, 9(1): 10351. DOI:10.1038/s41598-019-46649-z
    37. Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734. DOI:10.1177/2045125318814734
    38. Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11. DOI:10.1093/bioinformatics/bty472
    39. Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x
    40. Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8
    41. Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6
    42. Läll K, Mägi R, Morris A, et al. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med, 2017, 19(3): 322-329. DOI:10.1038/gim.2016.103
    43. Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232. DOI:10.1371/journal.pone.0157232
    44. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895
    45. Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309

    Other cited types(0)

Catalog

    Article Metrics

    Article views (4313) PDF downloads (139) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return