4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Yifei Cheng, Rongjie Shi, Shuai Ben, Silu Chen, Shuwei Li, Junyi Xin, Meilin Wang, Gong Cheng. Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing[J]. The Journal of Biomedical Research, 2024, 38(4): 358-368. DOI: 10.7555/JBR.38.20240030
Citation: Yifei Cheng, Rongjie Shi, Shuai Ben, Silu Chen, Shuwei Li, Junyi Xin, Meilin Wang, Gong Cheng. Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing[J]. The Journal of Biomedical Research, 2024, 38(4): 358-368. DOI: 10.7555/JBR.38.20240030

Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing

More Information
  • Corresponding author:

    Gong Cheng, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. E-mail: gcheng@njmu.edu.cn

  • These authors contribute equally to this work.

  • Received Date: February 01, 2024
  • Revised Date: April 23, 2024
  • Accepted Date: April 29, 2024
  • Available Online: May 07, 2024
  • Published Date: May 28, 2024
  • The current study aimed to investigate associations of circRNAs and related genetic variants with the risk of prostate cancer (PCa) as well as to elucidate biological mechanisms underlying the associations. We first compared expression levels of circRNAs between 25 paired PCa and adjacent normal tissues to identify risk-associated circRNAs by using the MiOncoCirc database. We then used logistic regression models to evaluate associations between genetic variants in candidate circRNAs and PCa risk among 4662 prostate cancer patients and 3114 healthy controls, and identified circHIBADH rs11973492 T>C as a significant risk-associated variant (odds ratio = 1.20, 95% confidence interval: 1.08–1.34, P = 7.06 × 10−4) in a dominant genetic model, which altered the secondary structure of the corresponding RNA chain. In the in silico analysis, we found that circHIBADH sponged and silenced 21 RNA-binding proteins (RBPs) enriched in the RNA splicing pathway, among which HNRNPA1 was identified and validated as a hub RBP using an external RNA-sequencing data as well as the in-house (four tissue samples) and publicly available single-cell transcriptomes. Additionally, we demonstrated that HNRNPA1 influenced hallmarks including MYC target, DNA repair, and E2F target signaling pathways, thereby promoting carcinogenesis. In conclusion, genetic variants in circHIBADH may act as sponges and inhibitors of RNA splicing-associated RBPs including HNRNPA1, playing an oncogenic role in PCa.

  • We thank Dr. Mulong Du from Nanjing Medical University for his guidance in the data interpretation.

    This work was supported by the Medical Research Project of Jiangsu Commission of Health (Grant No. M2022015).

    CLC number: R737.25, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
    [2]
    Wang YA, Sfakianos J, Tewari AK, et al. Molecular tracing of prostate cancer lethality[J]. Oncogene, 2020, 39(50): 7225–7238. doi: 10.1038/s41388-020-01496-5
    [3]
    Komura K, Sweeney CJ, Inamoto T, et al. Current treatment strategies for advanced prostate cancer[J]. Int J Urol, 2018, 25(3): 220–231. doi: 10.1111/iju.13512
    [4]
    Mucci LA, Hjelmborg JB, Harris JR, et al. Familial risk and heritability of cancer among twins in Nordic countries[J]. JAMA, 2016, 315(1): 68–76. doi: 10.1001/jama.2015.17703
    [5]
    Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction[J]. Nat Genet, 2021, 53(1): 65–75. doi: 10.1038/s41588-020-00748-0
    [6]
    Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations[J]. Nucleic Acids Res, 2014, 42(D1): D1001–D1006. doi: 10.1093/nar/gkt1229
    [7]
    Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675–691. doi: 10.1038/s41576-019-0158-7
    [8]
    Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215. doi: 10.1038/ncomms11215
    [9]
    Xia P, Wang S, Ye B, et al. A circular RNA protects dormant hematopoietic stem cells from DNA Sensor cGAS-mediated exhaustion[J]. Immunity, 2018, 48(4): 688–701.e7. doi: 10.1016/j.immuni.2018.03.016
    [10]
    Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death Differ, 2017, 24(2): 357–370. doi: 10.1038/cdd.2016.133
    [11]
    Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1[J]. Genome Biol, 2018, 19(1): 218. doi: 10.1186/s13059-018-1594-y
    [12]
    Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256–264. doi: 10.1038/nsmb.2959
    [13]
    Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 2018, 9(1): 4475. doi: 10.1038/s41467-018-06862-2
    [14]
    Bi J, Liu H, Dong W, et al. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178–3p/p21 axis and acts as a prognostic factor of recurrence[J]. Mol Cancer, 2019, 18(1): 133. doi: 10.1186/s12943-019-1060-9
    [15]
    Liu T, Liu S, Xu Y, et al. Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN[J]. Cancer Res Treat, 2018, 50(4): 1396–1417. doi: 10.4143/crt.2017.537
    [16]
    Kleivi Sahlberg K, Bottai G, Naume B, et al. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients[J]. Clin Cancer Res, 2015, 21(5): 1207–1214. doi: 10.1158/1078-0432.CCR-14-2011
    [17]
    Chen S, Huang V, Xu X, et al. Widespread and functional RNA circularization in localized prostate cancer[J]. Cell, 2019, 176(4): 831–843. e22. doi: 10.1016/j.cell.2019.01.025
    [18]
    Shen Z, Zhou L, Zhang C, et al. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel[J]. Cancer Lett, 2020, 468: 88–101. doi: 10.1016/j.canlet.2019.10.006
    [19]
    Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer[J]. Cell, 2019, 176(4): 869–881. e13. doi: 10.1016/j.cell.2018.12.021
    [20]
    Cheng Y, Meng Y, Li S, et al. Genetic variants in the cholesterol biosynthesis pathway genes and risk of prostate cancer[J]. Gene, 2021, 774: 145432. doi: 10.1016/j.gene.2021.145432
    [21]
    Tuong ZK, Loudon KW, Berry B, et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J]. Cell Rep, 2021, 37(12): 110132. doi: 10.1016/j.celrep.2021.110132
    [22]
    Henry GH, Malewska A, Joseph DB, et al. A cellular anatomy of the normal adult human prostate and prostatic urethra[J]. Cell Rep, 2018, 25(12): 3530–3542. e5. doi: 10.1016/j.celrep.2018.11.086
    [23]
    Yang Q, Li F, He AT, et al. Circular RNAs: expression, localization, and therapeutic potentials[J]. Mol Ther, 2021, 29(5): 1683–1702. doi: 10.1016/j.ymthe.2021.01.018
    [24]
    Yu Y, Lv D, Wang C, et al. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653–5p[J]. Mol Cancer, 2022, 21(1): 12. doi: 10.1186/s12943-021-01480-x
    [25]
    Ding L, Zheng Q, Lin Y, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage[J]. Clin Transl Med, 2023, 13(1): e1156. doi: 10.1002/ctm2.1156
    [26]
    Zhou R, Wu Y, Wang W, et al. Circular RNAs (circRNAs) in cancer[J]. Cancer Lett, 2018, 425: 134–142. doi: 10.1016/j.canlet.2018.03.035
    [27]
    Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125–1134. doi: 10.1016/j.cell.2015.02.014
    [28]
    Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55–66. doi: 10.1016/j.molcel.2014.08.019
    [29]
    Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233–2247. doi: 10.1101/gad.251926.114
    [30]
    Zhang X, Wang H, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134–147. doi: 10.1016/j.cell.2014.09.001
    [31]
    Paschalis A, Sharp A, Welti JC, et al. Alternative splicing in prostate cancer[J]. Nat Rev Clin Oncol, 2018, 15(11): 663–675. doi: 10.1038/s41571-018-0085-0
    [32]
    Kawamura N, Nimura K, Saga K, et al. SF3B2-mediated RNA splicing drives human prostate cancer progression[J]. Cancer Res, 2019, 79(20): 5204–5217. doi: 10.1158/0008-5472.CAN-18-3965
    [33]
    Roy R, Huang Y, Seckl MJ, et al. Emerging roles of hnRNPA1 in modulating malignant transformation[J]. WIREs RNA, 2017, 8(6): e1431. doi: 10.1002/wrna.1431
    [34]
    Tummala R, Lou W, Gao AC, et al. Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells[J]. Mol Cancer Ther, 2017, 16(12): 2770–2779. doi: 10.1158/1535-7163.MCT-17-0030
    [35]
    Zhang M, Sun Y, Huang C, et al. Targeting the Lnc-OPHN1–5/androgen receptor/hnRNPA1 complex increases Enzalutamide sensitivity to better suppress prostate cancer progression[J]. Cell Death Dis, 2021, 12(10): 855. doi: 10.1038/s41419-021-03966-4
    [36]
    Lian C, Zhang C, Tian P, et al. Epigenetic reader ZMYND11 noncanonical function restricts HNRNPA1-mediated stress granule formation and oncogenic activity[EB/OL]. [2023-11-28]. http://dx.doi.org/10.1101/2023.11.28.569112.
    [37]
    Möller K, Wecker AL, Höflmayer D, et al. Upregulation of the heterogeneous nuclear ribonucleoprotein hnRNPA1 is an independent predictor of early biochemical recurrence in TMPRSS2: ERG fusion-negative prostate cancers[J]. Virchows Arch, 2020, 477(5): 625–636. doi: 10.1007/s00428-020-02834-4
    [38]
    Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188–206. doi: 10.1038/s41571-021-00585-y
  • Related Articles

    [1]Minqin Xu, Lihua Zhang, Lan Lin, Zhiyi Qiang, Wei Liu, Jian Yang. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1[J]. The Journal of Biomedical Research, 2023, 37(6): 431-447. DOI: 10.7555/JBR.37.20230047
    [2]Yue Xiao, Yue Peng, Chi Zhang, Wei Liu, Kehan Wang, Jing Li. hucMSC-derived exosomes protect ovarian reserve and restore ovarian function in cisplatin treated mice[J]. The Journal of Biomedical Research, 2023, 37(5): 382-393. DOI: 10.7555/JBR.36.20220166
    [3]Haozhe Xu, Yiming Zhou, Jing Guo, Tao Ling, Yujie Xu, Ting Zhao, Chuanxin Shi, Zhongping Su, Qiang You. Elevated extracellular calcium ions accelerate the proliferation and migration of HepG2 cells and decrease cisplatin sensitivity[J]. The Journal of Biomedical Research, 2023, 37(5): 340-354. DOI: 10.7555/JBR.37.20230067
    [4]Li Wanlin, Wu Min, Wang Qianqian, Xu Kun, Lin Fan, Wang Qianghu, Guo Renhua. A comparative genomics analysis of lung adenocarcinoma for Chinese population by using panel of recurrent mutations[J]. The Journal of Biomedical Research, 2021, 35(1): 11-20. DOI: 10.7555/JBR.34.20200068
    [5]Liu Shuying, Lu Shan. Antibody responses in COVID-19 patients[J]. The Journal of Biomedical Research, 2020, 34(6): 410-415. DOI: 10.7555/JBR.34.20200134
    [6]Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078
    [7]Aixia Zhang, Brian Cao. Generation and characterization of an anti-GP73 monoclonal antibody for immunoblotting and sandwich ELISA[J]. The Journal of Biomedical Research, 2012, 26(6): 467-473. DOI: 10.7555/JBR.26.20120057
    [8]Xinjian Liu, Xiaomin Feng, Qi Tang, Zhongcan Wang, Zhenning Qiu, Yuhua Li, Changjun Wang, Zhenqing Feng, Jin Zhu, Xiaohong Guan. Characterization and potential diagnostic application of monoclonal antibodies specific to rabies virus[J]. The Journal of Biomedical Research, 2010, 24(5): 395-403. DOI: 10.1016/S1674-8301(10)60053-X
    [9]Chen Tao, Li Dan, Fuya ling, Gongzi Peng. In vivo and in vitro effects of QHF combined with chemotherapy on hepatocellular carcinoma[J]. The Journal of Biomedical Research, 2010, 24(2): 161-168.
    [10]Daozhen Chen, Qiusha Tang, Wenqun Xue, Jingying Xiang, Li Zhang, Xinru Wang. The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles[J]. The Journal of Biomedical Research, 2010, 24(1): 26-32.
  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal, 2024, 22(1): 265. DOI:10.1186/s12964-024-01648-0
    2. Li J, Peng L, Chen Q, et al. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel), 2022, 14(14): 3377. DOI:10.3390/cancers14143377
    3. Dötzer K, Schlüter F, Koch FEV, et al. Integrin α2β1 Represents a Prognostic and Predictive Biomarker in Primary Ovarian Cancer. Biomedicines, 2021, 9(3): 289. DOI:10.3390/biomedicines9030289
    4. Khine HEE, Ecoy GAU, Roytrakul S, et al. Chemosensitizing activity of peptide from Lentinus squarrosulus (Mont.) on cisplatin-induced apoptosis in human lung cancer cells. Sci Rep, 2021, 11(1): 4060. DOI:10.1038/s41598-021-83606-1
    5. Moreira AM, Pereira J, Melo S, et al. The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells, 2020, 9(2): 394. DOI:10.3390/cells9020394
    6. Haeger A, Alexander S, Vullings M, et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med, 2020, 217(1): e20181184. DOI:10.1084/jem.20181184
    7. Yang XG, Zhu LC, Wang YJ, et al. Current Advance of Therapeutic Agents in Clinical Trials Potentially Targeting Tumor Plasticity. Front Oncol, 2019, 9: 887. DOI:10.3389/fonc.2019.00887
    8. Manini I, Ruaro ME, Sgarra R, et al. Semaphorin-7A on Exosomes: A Promigratory Signal in the Glioma Microenvironment. Cancers (Basel), 2019, 11(6): 758. DOI:10.3390/cancers11060758
    9. Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel), 2017, 9(9): 110. DOI:10.3390/cancers9090110

    Other cited types(0)

Catalog

    Figures(4)  /  Tables(2)

    Article Metrics

    Article views (334) PDF downloads (193) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return