4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ren-Qi Li, Qiu-Ting Zeng, Mu-Huo Ji, Yue Zhang, Ming-Jie Mao, Shan-Wu Feng, Man-Lin Duan, Zhi-Qiang Zhou. Oxytocin ameliorates cognitive impairments by attenuating excitation/inhibition imbalance of neurotransmitters acting on parvalbumin interneurons in a mouse model of sepsis-associated encephalopathy[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.37.20230318
Citation: Ren-Qi Li, Qiu-Ting Zeng, Mu-Huo Ji, Yue Zhang, Ming-Jie Mao, Shan-Wu Feng, Man-Lin Duan, Zhi-Qiang Zhou. Oxytocin ameliorates cognitive impairments by attenuating excitation/inhibition imbalance of neurotransmitters acting on parvalbumin interneurons in a mouse model of sepsis-associated encephalopathy[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.37.20230318

Oxytocin ameliorates cognitive impairments by attenuating excitation/inhibition imbalance of neurotransmitters acting on parvalbumin interneurons in a mouse model of sepsis-associated encephalopathy

  • Inflammation plays a crucial role in the initiation and progression of sepsis, and it also induces alterations in brain neurotransmission, thereby contributing to the development of sepsis-associated encephalopathy (SAE). Parvalbumin (PV) interneurons are pivotal contributors to cognitive processes in various central dysfunctions including SAE. Oxytocin, known for its ability to augment the firing rate of gamma-aminobutyric acid (GABA)ergic interneurons and directly stimulate inhibitory interneurons to enhance the tonic inhibition of pyramidal neurons, has prompted an investigation into its potential effects on cognitive dysfunction in SAE. In the current study, we administered intranasal oxytocin to the SAE mice induced by lipopolysaccharide (LPS). Behavioral assessments, including open field, Y-maze, and fear conditioning, were used to evaluate cognitive performance. Golgi staining revealed hippocampal synaptic deterioration, local field potential recordings showed weakened gamma oscillations, and immunofluorescence analysis demonstrated decreased PV expression in the cornu ammonis 1 (CA1) region of the hippocampus following LPS treatment, which was alleviated by oxytocin. Furthermore, immunofluorescence staining of PV co-localization with vesicular glutamate transporter 1 or vesicular GABA transporter indicated a balanced excitation/inhibition effect of neurotransmitters on PV interneurons after oxytocin administration in the SAE mice, leading to improved cognitive function. In conclusion, cognitive function improved after oxytocin treatment. The number of PV neurons in the hippocampal CA1 region and the balance of excitatory/inhibitory synaptic transmission on PV interneurons, as well as changes in local field potential gamma oscillations in the hippocampal CA1 region, may represent its specific mechanisms.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return