4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Pei Wang, Xiaowei Wei, Xiaojun Qu, Yefei Zhu. Potential clinical application of microRNAs in bladder cancer[J]. The Journal of Biomedical Research, 2024, 38(4): 289-306. DOI: 10.7555/JBR.37.20230245
Citation: Pei Wang, Xiaowei Wei, Xiaojun Qu, Yefei Zhu. Potential clinical application of microRNAs in bladder cancer[J]. The Journal of Biomedical Research, 2024, 38(4): 289-306. DOI: 10.7555/JBR.37.20230245

Potential clinical application of microRNAs in bladder cancer

More Information
  • Corresponding author:

    Yefei Zhu, Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China. E-mail: zhuyf@njmu.edu.cn

  • △These authors contributed equally to this work.

  • Received Date: October 07, 2023
  • Revised Date: January 04, 2024
  • Accepted Date: January 11, 2024
  • Available Online: January 11, 2024
  • Published Date: May 28, 2024
  • Bladder cancer (BC) is the tenth most prevalent malignancy globally, presenting significant clinical and societal challenges because of its high incidence, rapid progression, and frequent recurrence. Presently, cystoscopy and urine cytology serve as the established diagnostic methods for BC. However, their efficacy is limited by their invasive nature and low sensitivity. Therefore, the development of highly specific biomarkers and effective non-invasive detection strategies is imperative for achieving a precise and timely diagnosis of BC, as well as for facilitating an optimal tumor treatment and an improved prognosis. microRNAs (miRNAs), short noncoding RNA molecules spanning around 20–25 nucleotides, are implicated in the regulation of diverse carcinogenic pathways. Substantially altered miRNAs form robust functional regulatory networks that exert a notable influence on the tumorigenesis and progression of BC. Investigations into aberrant miRNAs derived from blood, urine, or extracellular vesicles indicate their potential roles as diagnostic biomarkers and prognostic indicators in BC, enabling miRNAs to monitor the progression and predict the recurrence of the disease. Simultaneously, the investigation centered on miRNA as a potential therapeutic agent presents a novel approach for the treatment of BC. This review comprehensively analyzes biological roles of miRNAs in tumorigenesis and progression, and systematically summarizes their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for BC. Additionally, we evaluate the progress made in laboratory techniques within this field and discuss the prospects.

  • None.

    This work was supported by the China Postdoctoral Science Foundation (Grant No. 2022M721404), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220737), the Social Development Foundation of Clinical Frontier Technology of Jiangsu Province (Grant No. BE2017763), and the Medical Research Project of Jiangsu Province Health Committee (Grant No. K2019020).

    CLC number: R73, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
    [2]
    Alanee S, Alvarado-Cabrero I, Murugan P, et al. Update of the International Consultation on Urological Diseases on bladder cancer 2018: non-urothelial cancers of the urinary bladder[J]. World J Urol, 2019, 37(1): 107–114. doi: 10.1007/s00345-018-2421-5
    [3]
    Kamat AM, Hahn NM, Efstathiou JA, et al. Bladder cancer[J]. Lancet, 2016, 388(10061): 2796–2810. doi: 10.1016/S0140-6736(16)30512-8
    [4]
    Pasin E, Josephson DY, Mitra AP, et al. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history[J]. Rev Urol, 2008, 10(1): 31–43. https://europepmc.org/article/MED/18470273
    [5]
    van Hoogstraten LMC, Vrieling A, van der Heijden AG, et al. Global trends in the epidemiology of bladder cancer: challenges for public health and clinical practice[J]. Nat Rev Clin Oncol, 2023, 20(5): 287–304. doi: 10.1038/s41571-023-00744-3
    [6]
    Powles T, Bellmunt J, Comperat E, et al. Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2022, 33(3): 244–258. doi: 10.1016/j.annonc.2021.11.012
    [7]
    Oeyen E, Hoekx L, De Wachter S, et al. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles[J]. Int J Mol Sci, 2019, 20(4): 821. doi: 10.3390/ijms20040821
    [8]
    Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci U S A, 2004, 101(9): 2999–3004. doi: 10.1073/pnas.0307323101
    [9]
    Xu L, Yang B, Ai J. MicroRNA transport: a new way in cell communication[J]. J Cell Physiol, 2013, 228(8): 1713–1719. doi: 10.1002/jcp.24344
    [10]
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281–297. doi: 10.1016/S0092-8674(04)00045-5
    [11]
    Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways[J]. Nat Rev Mol Cell Biol, 2019, 20(1): 5–20. doi: 10.1038/s41580-018-0059-1
    [12]
    Ha M, Kim VN. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8): 509–524. doi: 10.1038/nrm3838
    [13]
    Leitão AL, Enguita FJ. A structural view of miRNA biogenesis and function[J]. Non-Coding RNA, 2022, 8(1): 10. doi: 10.3390/ncrna8010010
    [14]
    Ambros V. microRNAs: tiny regulators with great potential[J]. Cell, 2001, 107(7): 823–826. doi: 10.1016/S0092-8674(01)00616-X
    [15]
    Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215–233. doi: 10.1016/j.cell.2009.01.002
    [16]
    Grimaldi AM, Lapucci C, Salvatore M, et al. Urinary miRNAs as a diagnostic tool for bladder cancer: a systematic review[J]. Biomedicines, 2022, 10(11): 2766. doi: 10.3390/biomedicines10112766
    [17]
    Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24): 15524–15529. doi: 10.1073/pnas.242606799
    [18]
    Khan AQ, Ahmed EI, Elareer NR, et al. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies[J]. Cells, 2019, 8(8): 840. doi: 10.3390/cells8080840
    [19]
    Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers[J]. Trends Genet, 2022, 38(4): 379–394. doi: 10.1016/j.tig.2021.10.002
    [20]
    Cen W, Yan Q, Zhou W, et al. miR-4739 promotes epithelial-mesenchymal transition and angiogenesis in "driver gene-negative" non-small cell lung cancer via activating the Wnt/β-catenin signaling[J]. Cell Oncol, 2023, 46(6): 1821–1835. doi: 10.1007/s13402-023-00848-z
    [21]
    Sun B, Ji W, Liu C, et al. miR-2392 functions as tumour suppressor and inhibits malignant progression of hepatocellular carcinoma via directly targeting JAG2[J]. Liver Int, 2022, 42(7): 1658–1673. doi: 10.1111/liv.15284
    [22]
    O'Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol (Lausanne), 2018, 9: 402. doi: 10.3389/fendo.2018.00402
    [23]
    Lu X, Huang M, Chen L, et al. SCARA5 as a downstream factor of PCAT29, inhibits proliferation, migration, and invasion of bladder cancer[J]. Genomics, 2023, 115(5): 110667. doi: 10.1016/j.ygeno.2023.110667
    [24]
    Feng C, Sun P, Hu J, et al. miRNA-556-3p promotes human bladder cancer proliferation, migration and invasion by negatively regulating DAB2IP expression[J]. Int J Oncol, 2017, 50(6): 2101–2112. doi: 10.3892/ijo.2017.3969
    [25]
    Wang K, Lü H, Qu H, et al. miR-492 promotes cancer progression by targeting GJB4 and is a novel biomarker for bladder cancer[J]. Onco Targets Ther, 2019, 12: 11453–11464. doi: 10.2147/OTT.S223448
    [26]
    Meng W, Efstathiou J, Singh R, et al. MicroRNA biomarkers for patients with muscle-invasive bladder cancer undergoing selective bladder-sparing trimodality treatment[J]. Int J Radiat Oncol Biol Phys, 2019, 104(1): 197–206. doi: 10.1016/j.ijrobp.2018.12.028
    [27]
    Xie X, Pan J, Han X, et al. Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/β-catenin signaling[J]. Chem Biol Interact, 2019, 300: 73–81. doi: 10.1016/j.cbi.2019.01.015
    [28]
    Hwang TIS, Chen P, Tsai TF, et al. Hsa-miR-30a-3p overcomes the acquired protective autophagy of bladder cancer in chemotherapy and suppresses tumor growth and muscle invasion[J]. Cell Death Dis, 2022, 13(4): 390. doi: 10.1038/s41419-022-04791-z
    [29]
    Zhang Q, Miao S, Han X, et al. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21[J]. Cell Death Dis, 2018, 9(10): 960. doi: 10.1038/s41419-018-0986-y
    [30]
    Hwang TIS, Cuiu YC, Chen Y, et al. Tumor suppressive functions of hsa-miR-34a on cell cycle, migration and protective autophagy in bladder cancer[J]. Int J Oncol, 2023, 62(5): 66. doi: 10.3892/ijo.2023.5514
    [31]
    Wang C, Tang Z, Zhang Z, et al. MiR-7-5p suppresses invasion via downregulation of the autophagy-related gene ATG7 and increases chemoresistance to cisplatin in BCa[J]. Bioengineered, 13(3): 7328–7339.
    [32]
    Zhao F, Zhou L, Ge Y, et al. MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle[J]. J Cell Physiol, 2019, 234(4): 4910–4923. doi: 10.1002/jcp.27288
    [33]
    Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers[J]. Nature, 2005, 435(7043): 834–838. doi: 10.1038/nature03702
    [34]
    Schaefer A, Stephan C, Busch J, et al. Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors[J]. Nat Rev Urol, 2010, 7(5): 286–297. doi: 10.1038/nrurol.2010.45
    [35]
    Dieckmann KP, Radtke A, Geczi L, et al. Serum levels of MicroRNA-371a-3p (M371 Test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study[J]. J Clin Oncol, 2019, 37(16): 1412–1423. doi: 10.1200/JCO.18.01480
    [36]
    Ratert N, Meyer HA, Jung M, et al. miRNA profiling identifies candidate miRNAs for bladder cancer diagnosis and clinical outcome[J]. J Mol Diagn, 2013, 15(5): 695–705. doi: 10.1016/j.jmoldx.2013.05.008
    [37]
    Yu Z, Lu C, Lai Y. A serum miRNAs signature for early diagnosis of bladder cancer[J]. Ann Med, 2023, 55(1): 736–745. doi: 10.1080/07853890.2023.2172206
    [38]
    Du M, Shi D, Yuan L, et al. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer[J]. Sci Rep, 2015, 5: 10437. doi: 10.1038/srep10437
    [39]
    Usuba W, Urabe F, Yamamoto Y, et al. Circulating miRNA panels for specific and early detection in bladder cancer[J]. Cancer Sci, 2019, 110(1): 408–419. doi: 10.1111/cas.13856
    [40]
    Wang J, Peng X, Li R, et al. Evaluation of serum miR-17-92 cluster as noninvasive biomarkers for bladder cancer diagnosis[J]. Front Oncol, 2021, 11: 795837. doi: 10.3389/fonc.2021.795837
    [41]
    Jiang X, Du L, Wang L, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer[J]. Int J Cancer, 2015, 136(4): 854–862. doi: 10.1002/ijc.29041
    [42]
    Li R, Chen X, Li X, et al. A four-miRNA signature in serum as a biomarker for bladder cancer diagnosis[J]. Am J Transl Res, 2022, 14(7): 4606–4616. https://pubmed.ncbi.nlm.nih.gov/35958461/
    [43]
    Yang L, Sun H, Guo L, et al. MiR-10a-5p: a promising biomarker for early diagnosis and prognosis evaluation of bladder cancer[J]. Cancer Manag Res, 2021, 13: 7841–7850. doi: 10.2147/CMAR.S326732
    [44]
    Feng Y, Liu J, Kang Y, et al. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer[J]. J Exp Clin Cancer Res, 2014, 33(1): 67. doi: 10.1186/s13046-014-0067-8
    [45]
    Yang Y, Qu A, Liu J, et al. Serum miR-210 contributes to tumor detection, stage prediction and dynamic surveillance in patients with bladder cancer[J]. PLoS One, 2015, 10(8): e0135168. doi: 10.1371/journal.pone.0135168
    [46]
    Suarez-Cabrera C, Estudillo L, Ramón-Gil E, et al. BlaDimiR: a urine-based miRNA score for accurate bladder cancer diagnosis and follow-up[J]. Eur Urol, 2022, 82(6): 663–667. doi: 10.1016/j.eururo.2022.08.011
    [47]
    Erdmann K, Salomo K, Klimova A, et al. Urinary MicroRNAs as potential markers for non-invasive diagnosis of bladder cancer[J]. Int J Mol Sci, 2020, 21(11): 3814. doi: 10.3390/ijms21113814
    [48]
    Eissa S, Matboli M, Hegazy MGA, et al. Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis[J]. Transl Res, 2015, 165(6): 731–739. doi: 10.1016/j.trsl.2014.12.008
    [49]
    Eissa S, Habib H, Ali E, et al. Evaluation of urinary miRNA-96 as a potential biomarker for bladder cancer diagnosis[J]. Med Oncol, 2014, 32(1): 413. doi: 10.1007/s12032-014-0413-x
    [50]
    Yamada Y, Enokida H, Kojima S, et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology[J]. Cancer Sci, 2011, 102(3): 522–529. doi: 10.1111/j.1349-7006.2010.01816.x
    [51]
    Piao X, Jeong P, Kim YH, et al. Urinary cell-free microRNA biomarker could discriminate bladder cancer from benign hematuria[J]. Int J Cancer, 2019, 144(2): 380–388. doi: 10.1002/ijc.31849
    [52]
    Lin JT, Tsai KW. Circulating miRNAs act as diagnostic biomarkers for bladder cancer in urine[J]. Int J Mol Sci, 2021, 22(8): 4278. doi: 10.3390/ijms22084278
    [53]
    Cavallari I, Grassi A, Del Bianco P, et al. Prognostic stratification of bladder cancer patients with a MicroRNA-based approach[J]. Cancers, 2020, 12(11): 3133. doi: 10.3390/cancers12113133
    [54]
    Spagnuolo M, Costantini M, Ferriero M, et al. Urinary expression of let-7c cluster as non-invasive tool to assess the risk of disease progression in patients with high grade non-muscle invasive bladder Cancer: a pilot study[J]. J Exp Clin Cancer Res, 2020, 39(1): 68. doi: 10.1186/s13046-020-01550-w
    [55]
    Sapre N, Macintyre G, Clarkson M, et al. A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance[J]. Br J Cancer, 2016, 114(4): 454–462. doi: 10.1038/bjc.2015.472
    [56]
    Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977
    [57]
    Wu P, Zhang B, Ocansey DKW, et al. Extracellular vesicles: a bright star of nanomedicine[J]. Biomaterials, 2021, 269: 120467. doi: 10.1016/j.biomaterials.2020.120467
    [58]
    Song Q, Yu H, Han J, et al. Exosomes in urological diseases-Biological functions and clinical applications[J]. Cancer Lett, 2022, 544: 215809. doi: 10.1016/j.canlet.2022.215809
    [59]
    Matsui T, Sakamaki Y, Nakashima S, et al. Rab39 and its effector UACA regulate basolateral exosome release from polarized epithelial cells[J]. Cell Rep, 2022, 39(9): 110875. doi: 10.1016/j.celrep.2022.110875
    [60]
    Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022, 21(5): 379–399. doi: 10.1038/s41573-022-00410-w
    [61]
    Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function[J]. Genomics Proteomics Bioinformatics, 2015, 13(1): 17–24. doi: 10.1016/j.gpb.2015.02.001
    [62]
    Abhange K, Makler A, Wen Y, et al. Small extracellular vesicles in cancer[J]. Bioact Mater, 2021, 6(11): 3705–3743. https://www.sciencedirect.com/science/article/pii/S2452199X21001237
    [63]
    Armstrong DA, Green BB, Seigne JD, et al. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer[J]. Mol Cancer, 2015, 14: 194. doi: 10.1186/s12943-015-0466-2
    [64]
    Lin H, Shi X, Li H, et al. Urinary exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer[J]. BMC Cancer, 2021, 21(1): 1293. doi: 10.1186/s12885-021-08926-x
    [65]
    Güllü Amuran G, Tinay I, Filinte D, et al. Urinary micro-RNA expressions and protein concentrations may differentiate bladder cancer patients from healthy controls[J]. Int Urol Nephrol, 2020, 52(3): 461–468. doi: 10.1007/s11255-019-02328-6
    [66]
    Sabo AA, Birolo G, Naccarati A, et al. Small non-coding RNA profiling in plasma extracellular vesicles of bladder cancer patients by next-generation sequencing: expression levels of miR-126-3p and piR-5936 increase with higher histologic grades[J]. Cancers (Basel), 2020, 12(6): 1507. doi: 10.3390/cancers12061507
    [67]
    Baumgart S, Meschkat P, Edelmann P, et al. MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic tool for muscle-invasive bladder cancer[J]. J Cancer Res Clin Oncol, 2019, 145(11): 2725–2736. doi: 10.1007/s00432-019-03035-6
    [68]
    Andreu Z, Otta Oshiro R, Redruello A, et al. Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression[J]. Eur J Pharm Sci, 2017, 98: 70–79. doi: 10.1016/j.ejps.2016.10.008
    [69]
    Strømme O, Heck KA, Brede G, et al. Differentially expressed extracellular vesicle-contained microRNAs before and after transurethral resection of bladder tumors[J]. Curr Issues Mol Biol, 2021, 43(1): 286–300. doi: 10.3390/cimb43010024
    [70]
    Dudderidge TJ. Urinary markers in bladder cancer[J]. BJU Int, 2003, 92(7): 823–824. doi: 10.1046/j.1464-410x.2003.t01-3-04488.x
    [71]
    Selbach M, Schwanhäusser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs[J]. Nature, 2008, 455(7209): 58–63. doi: 10.1038/nature07228
    [72]
    Wu S, Huang S, Ding J, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3' untranslated region[J]. Oncogene, 2010, 29(15): 2302–2308. doi: 10.1038/onc.2010.34
    [73]
    Giannopoulou AF, Velentzas AD, Konstantakou EG, et al. Revisiting histone deacetylases in human tumorigenesis: the paradigm of urothelial bladder cancer[J]. Int J Mol Sci, 2019, 20(6): 1291. doi: 10.3390/ijms20061291
    [74]
    Cai Z, Zhang F, Chen W, et al. miRNAs: a promising target in the chemoresistance of bladder cancer[J]. Onco Targets Ther, 2019, 12: 11805–11816. doi: 10.2147/OTT.S231489
    [75]
    Si W, Shen J, Zheng H, et al. The role and mechanisms of action of microRNAs in cancer drug resistance[J]. Clin Epigenetics, 2019, 11(1): 25. doi: 10.1186/s13148-018-0587-8
    [76]
    Yu M, Ozaki T, Sun D, et al. HIF-1α-dependent miR-424 induction confers cisplatin resistance on bladder cancer cells through down-regulation of pro-apoptotic UNC5B and SIRT4[J]. J Exp Clin Cancer Res, 2020, 39(1): 108. doi: 10.1186/s13046-020-01613-y
    [77]
    Vinall RL, Ripoll AZ, Wang S, et al. MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status[J]. Int J Cancer, 2012, 130(11): 2526–2538. doi: 10.1002/ijc.26256
    [78]
    Liu X, Liu X, Wu Y, et al. MicroRNA-34a attenuates metastasis and chemoresistance of bladder cancer cells by targeting the TCF1/LEF1 Axis[J]. Cell Physiol Biochem, 2018, 48(1): 87–98. doi: 10.1159/000491665
    [79]
    Li H, Yu G, Shi R, et al. Cisplatin-induced epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy[J]. Mol Cancer, 2014, 13: 8. doi: 10.1186/1476-4598-13-8
    [80]
    Deng Y, Bai H, Hu H. rs11671784 G/A variation in miR-27a decreases chemo-sensitivity of bladder cancer by decreasing miR-27a and increasing the target RUNX-1 expression[J]. Biochem Biophys Res Commun, 2015, 458(2): 321–327. doi: 10.1016/j.bbrc.2015.01.109
    [81]
    Drayton RM, Dudziec E, Peter S, et al. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11[J]. Clin Cancer Res, 2014, 20(7): 1990–2000. doi: 10.1158/1078-0432.CCR-13-2805
    [82]
    Tamai M, Tatarano S, Okamura S, et al. microRNA-99a-5p induces cellular senescence in gemcitabine-resistant bladder cancer by targeting SMARCD1[J]. Mol Oncol, 2022, 16(6): 1329–1346. doi: 10.1002/1878-0261.13192
    [83]
    Zhuang J, Shen L, Li M, et al. Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance[J]. Cancer Res, 2023, 83(10): 1611–1627. doi: 10.1158/0008-5472.CAN-22-2213
    [84]
    Song T, Zhang X, Zhang L, et al. miR-708 promotes the development of bladder carcinoma via direct repression of Caspase-2[J]. J Cancer Res Clin Oncol, 2013, 139(7): 1189–1198. doi: 10.1007/s00432-013-1392-6
    [85]
    Yan R, Dai W, Wu R, et al. Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer[J]. Cancer Lett, 2022, 534: 215615. doi: 10.1016/j.canlet.2022.215615
    [86]
    Xiang Y, Lv D, Song T, et al. Tumor suppressive role of microRNA-139-5p in bone marrow mesenchymal stem cells-derived extracellular vesicles in bladder cancer through regulation of the KIF3A/p21 axis[J]. Cell Death Dis, 2022, 13(7): 599. doi: 10.1038/s41419-022-04936-0
    [87]
    Cai X, Qu L, Yang J, et al. Exosome-transmitted microRNA-133b inhibited bladder cancer proliferation by upregulating dual-specificity protein phosphatase 1[J]. Cancer Med, 2020, 9(16): 6009–6019. doi: 10.1002/cam4.3263
    [88]
    Zo RB, Long Z. MiR-124-3p suppresses bladder cancer by targeting DNA methyltransferase 3B[J]. J Cell Physiol, 2019, 234(1): 464–474. doi: 10.1002/jcp.26591
    [89]
    Liu T, Li T, Zheng Y, et al. Evaluating adipose-derived stem cell exosomes as miRNA drug delivery systems for the treatment of bladder cancer[J]. Cancer Med, 2022, 11(19): 3687–3699. doi: 10.1002/cam4.4745
    [90]
    Shahidi M, Abazari O, Dayati P, et al. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy[J]. Front Bioeng Biotechnol, 2022, 10: 949704. doi: 10.3389/fbioe.2022.949704
    [91]
    Haddick L, Zhang W, Reinhard S, et al. Particle-size-dependent delivery of antitumoral miRNA using targeted mesoporous silica nanoparticles[J]. Pharmaceutics, 2020, 12(6): 505. doi: 10.3390/pharmaceutics12060505
    [92]
    Xu R, Li H, Wu S, et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53[J]. Int Urol Nephrol, 2019, 51(10): 1771–1779. doi: 10.1007/s11255-019-02210-5
    [93]
    Wang Y, He L, Huang K, et al. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays[J]. Analyst, 2019, 144(9): 2849–2866. doi: 10.1039/C9AN00081J
    [94]
    Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available[J]. Methods, 2010, 50(4): 244–249. doi: 10.1016/j.ymeth.2010.01.026
    [95]
    Adampourezare M, Hasanzadeh M, Seidi F. Microfluidic assisted recognition of miRNAs towards point-of-care diagnosis: technical and analytical overview towards biosensing of short stranded single non-coding oligonucleotides[J]. Biomed Pharmacother, 2022, 153: 113365. doi: 10.1016/j.biopha.2022.113365
    [96]
    Cao L, Cui X, Hu J, et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications[J]. Biosens Bioelectron, 2017, 90: 459–474. doi: 10.1016/j.bios.2016.09.082
    [97]
    Zhang L, Parvin R, Fan Q, et al. Emerging digital PCR technology in precision medicine[J]. Biosens Bioelectron, 2022, 211: 114344. doi: 10.1016/j.bios.2022.114344
    [98]
    Gines G, Menezes R, Xiao W, et al. Emerging isothermal amplification technologies for microRNA biosensing: applications to liquid biopsies[J]. Mol Aspects Med, 2020, 72: 100832. doi: 10.1016/j.mam.2019.11.002
    [99]
    Dave VP, Ngo TA, Pernestig AK, et al. MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics[J]. Lab Invest, 2019, 99(4): 452–469. doi: 10.1038/s41374-018-0143-3
    [100]
    Johnson BN, Mutharasan R. Biosensor-based microRNA detection: techniques, design, performance, and challenges[J]. Analyst, 2014, 139(7): 1576–1588. doi: 10.1039/c3an01677c
    [101]
    Wei X, Bian F, Cai X, et al. Multiplexed detection strategy for bladder cancer microRNAs based on photonic crystal barcodes[J]. Anal Chem, 2020, 92(8): 6121–6127. doi: 10.1021/acs.analchem.0c00630
    [102]
    Xu J, Wei X, Zhang X, et al. Multiplexed detection of bladder cancer microRNAs based on core-shell-shell magnetic quantum dot microbeads and cascade signal amplification[J]. Sens Actuators B Chem, 2021, 349: 130824. doi: 10.1016/j.snb.2021.130824
    [103]
    Zhao K, Peng Z, Jiang H, et al. Shape-coded hydrogel microparticles integrated with hybridization chain reaction and a microfluidic chip for sensitive detection of multi-target miRNAs[J]. Sens Actuators B Chem, 2022, 361: 131741. doi: 10.1016/j.snb.2022.131741
    [104]
    Moisoiu T, Dragomir MP, Iancu SD, et al. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer[J]. Mol Med, 2022, 28(1): 39. doi: 10.1186/s10020-022-00462-z
    [105]
    Kilic T, Erdem A, Ozsoz M, et al. microRNA biosensors: opportunities and challenges among conventional and commercially available techniques[J]. Biosens Bioelectron, 2018, 99: 525–546. doi: 10.1016/j.bios.2017.08.007
    [106]
    Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487–514. doi: 10.1146/annurev-biochem-013118-111902
    [107]
    Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization[J]. Small Methods, 2018, 2(9): 1800021. doi: 10.1002/smtd.201800021
    [108]
    Liu H, Kumar R, Zhong C, et al. Rapid capture of cancer extracellular vesicles by lipid patch microarrays[J]. Adv Mater, 2021, 33(35): 2008493. doi: 10.1002/adma.202008493
    [109]
    Wang S, Zhang L, Wan S, et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes[J]. ACS Nano, 2017, 11(4): 3943–3949. doi: 10.1021/acsnano.7b00373
    [110]
    Yang HC, Ham YM, Kim JA, et al. Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads[J]. J Extracell Vesicles, 2021, 10(4): e12074. doi: 10.1002/jev2.12074
    [111]
    Meeks JJ, Al-Ahmadie H, Faltas BM, et al. Genomic heterogeneity in bladder cancer: challenges and possible solutions to improve outcomes[J]. Nat Rev Urol, 2020, 17(5): 259–270. doi: 10.1038/s41585-020-0304-1
    [112]
    Tiberio P, Callari M, Angeloni V, et al. Challenges in using circulating miRNAs as cancer biomarkers[J]. Biomed Res Int, 2015, 2015: 731479. doi: 10.1155/2015/731479
    [113]
    Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies[J]. Exp Mol Med, 2023, 55(7): 1314–1321. doi: 10.1038/s12276-023-01050-9
    [114]
    Borhani S, Borhani R, Kajdacsy-Balla A. Artificial intelligence: a promising frontier in bladder cancer diagnosis and outcome prediction[J]. Crit Rev Oncol Hematol, 2022, 171: 103601. doi: 10.1016/j.critrevonc.2022.103601
    [115]
    Shmatko A, Ghaffari Laleh N, Gerstung M, et al. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology[J]. Nat Cancer, 2022, 3(9): 1026–1038. doi: 10.1038/s43018-022-00436-4

Catalog

    Figures(5)  /  Tables(4)

    Article Metrics

    Article views (1091) PDF downloads (234) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return