Citation: | Mengfan Guo, Jingyuan Liu, Yujuan Zhang, Jingjing Gu, Junyi Xin, Mulong Du, Haiyan Chu, Meilin Wang, Hanting Liu, Zhengdong Zhang. Genetic variants in C1GALT1 are associated with gastric cancer risk by influencing immune infiltration[J]. The Journal of Biomedical Research, 2024, 38(4): 348-357. DOI: 10.7555/JBR.37.20230161 |
Core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) is known to play a critical role in the development of gastric cancer, but few studies have elucidated associations between genetic variants in C1GALT1 and gastric cancer risk. By using the genome-wide association study data from the database of Genotype and Phenotype (dbGAP), we evaluated such associations with a multivariable logistic regression model and identified that the rs35999583 G>C in C1GALT1 was associated with gastric cancer risk (odds ratio, 0.83; 95% confidence interval [CI], 0.75–0.92; P = 3.95 × 10−4). C1GALT1 mRNA expression levels were significantly higher in gastric tumor tissues than in normal tissues, and gastric cancer patients with higher C1GALT1 mRNA levels had worse overall survival rates (hazards ratio, 1.33; 95% CI, 1.05–1.68; Plog-rank = 1.90 × 10−2). Furthermore, we found that C1GALT1 copy number differed in various immune cells and that C1GALT1 mRNA expression levels were positively correlated with the infiltrating levels of CD4+ T cells and macrophages. These results suggest that genetic variants of C1GALT1 may play an important role in gastric cancer risk and provide a new insight for C1GALT1 into a promising predictor of gastric cancer susceptibility and immune status.
The authors would like to thank Dr. Xudong Song of the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University for providing assistance with sample collection.
The present study was funded by the National Key R&D Program of China (Grant Nos. 2018YFC1313100 and 2018YFC1313102), the National Natural Science Foundation of China (Grant No. 81773539), Collaborative Innovation Center for Cancer Personalized Medicine, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).
CLC number: R735.2, Document code: A
The authors reported no conflict of interests.
[1] |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584–590. doi: 10.1097/CM9.0000000000002108
|
[2] |
Plummer M, Franceschi S, Vignat J, et al. Global burden of gastric cancer attributable to Helicobacter pylori[J]. Int J Cancer, 2015, 136(2): 487–490. doi: 10.1002/ijc.28999
|
[3] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394–424. doi: 10.3322/caac.21492
|
[4] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115–132. doi: 10.3322/caac.21338
|
[5] |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635–648. doi: 10.1016/S0140-6736(20)31288-5
|
[6] |
The International HapMap Consortium. A haplotype map of the human genome[J]. Nature, 2005, 437(7063): 1299–1320. doi: 10.1038/nature04226
|
[7] |
Xu M, Qiang F, Gao Y, et al. Evaluation of a novel functional single-nucleotide polymorphism (rs35010275 G>C) in MIR196A2 promoter region as a risk factor of gastric cancer in a Chinese population[J]. Medicine (Baltimore), 2014, 93(26): e173. doi: 10.1097/MD.0000000000000173
|
[8] |
Yan C, Zhu M, Ding Y, et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations[J]. Gut, 2020, 69(4): 641–651. doi: 10.1136/gutjnl-2019-318760
|
[9] |
Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer[J]. Oncotarget, 2016, 7(23): 35478–35489. doi: 10.18632/oncotarget.8155
|
[10] |
Peixoto A, Relvas-Santos M, Azevedo R, et al. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks[J]. Front Oncol, 2019, 9: 380. doi: 10.3389/fonc.2019.00380
|
[11] |
Martinez-Morales P, Morán Cruz I, Roa-de la Cruz L, et al. Hallmarks of glycogene expression and glycosylation pathways in squamous and adenocarcinoma cervical cancer[J]. PeerJ, 2021, 9: e12081. doi: 10.7717/peerj.12081
|
[12] |
Silsirivanit A. Glycosylation markers in cancer[J]. Adv Clin Chem, 2019, 89: 189–213. doi: 10.1016/bs.acc.2018.12.005
|
[13] |
Magalhães A, Duarte HO, Reis CA. The role of O-glycosylation in human disease[J]. Mol Aspects Med, 2021, 79: 100964. doi: 10.1016/j.mam.2021.100964
|
[14] |
Bennett EP, Mandel U, Clausen H, et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family[J]. Glycobiology, 2012, 22(6): 736–756. doi: 10.1093/glycob/cwr182
|
[15] |
Chugh S, Barkeer S, Rachagani S, et al. Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in mice[J]. Gastroenterology, 2018, 155(5): 1608–1624. doi: 10.1053/j.gastro.2018.08.007
|
[16] |
Liu F, Fu J, Bergstrom K, et al. Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer[J]. J Exp Med, 2020, 217(1): e20182325. doi: 10.1084/jem.20182325
|
[17] |
Dong X, Chen C, Deng X, et al. A novel mechanism for C1GALT1 in the regulation of gastric cancer progression[J]. Cell Biosci, 2021, 11(1): 166. doi: 10.1186/s13578-021-00678-2
|
[18] |
Sun X, Zhan M, Sun X, et al. C1GALT1 in health and disease (Review)[J]. Oncol Lett, 2021, 22(2): 589. doi: 10.3892/ol.2021.12850
|
[19] |
Kim R, An M, Lee H, et al. Early tumor-immune microenvironmental remodeling and response to first-line fluoropyrimidine and platinum chemotherapy in advanced gastric cancer[J]. Cancer Discov, 2022, 12(4): 984–1001. doi: 10.1158/2159-8290.CD-21-0888
|
[20] |
Wang Y, Zhou X, Chen P, et al. Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy[J]. J Am Soc Nephrol, 2021, 32(3): 545–552. doi: 10.1681/ASN.2020060823
|
[21] |
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies[J]. PLoS Genet, 2009, 5(6): e1000529. doi: 10.1371/journal.pgen.1000529
|
[22] |
Elsworth B, Lyon M, Alexander T, et al. The MRC IEU OpenGWAS data infrastructure[EB/OL]. [2022-11-12]. https://doi.org/10.1101/2020.08.10.244293.
|
[23] |
Pontén F, Jirström K, Uhlen M. The Human Protein Atlas—a tool for pathology[J]. J Pathol, 2008, 216(4): 387–393. doi: 10.1002/path.2440
|
[24] |
Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108–e110. doi: 10.1158/0008-5472.CAN-17-0307
|
[25] |
Tan Z, Jiang Y, Liang L, et al. Dysregulation and prometastatic function of glycosyltransferase C1GALT1 modulated by cHP1BP3/ miR-1-3p axis in bladder cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 228. doi: 10.1186/s13046-022-02438-7
|
[26] |
Lee PC, Chen ST, Kuo TC, et al. C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer[J]. Oncogene, 2020, 39(13): 2724–2740. doi: 10.1038/s41388-020-1178-7
|
[27] |
Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—first American cancer society award lecture on cancer epidemiology and prevention[J]. Cancer Res, 1992, 52(24): 6735–6740. https://europepmc.org/article/MED/1458460
|
[28] |
McGuckin MA, Lindén SK, Sutton P, et al. Mucin dynamics and enteric pathogens[J]. Nat Rev Microbiol, 2011, 9(4): 265–278. doi: 10.1038/nrmicro2538
|
[29] |
Magalhães A, Rossez Y, Robbe-Masselot C, et al. Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding[J]. Sci Rep, 2016, 6: 25575. doi: 10.1038/srep25575
|
[30] |
Zhang H, Fu L. The role of ALDH2 in tumorigenesis and tumor progression: targeting ALDH2 as a potential cancer treatment[J]. Acta Pharm Sin B, 2021, 11(6): 1400–1411. doi: 10.1016/j.apsb.2021.02.008
|
[31] |
Kuo T, Wu MH, Yang SH, et al. C1GALT1 high expression is associated with poor survival of patients with pancreatic ductal adenocarcinoma and promotes cell invasiveness through integrin αv[J]. Oncogene, 2021, 40(7): 1242–1254. doi: 10.1038/s41388-020-01594-4
|
[32] |
Wu Y, Liu CH, Huang MJ, et al. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization[J]. Cancer Res, 2013, 73(17): 5580–5590. doi: 10.1158/0008-5472.CAN-13-0869
|
[33] |
Alexander WS, Viney EM, Zhang J, et al. Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene[J]. Proc Natl Acad Sci U S A, 2006, 103(44): 16442–16447. doi: 10.1073/pnas.0607872103
|
[34] |
Lin M, Chuang Y, Wu HY, et al. Targeting tumor O-glycosylation modulates cancer-immune-cell crosstalk and enhances anti-PD-1 immunotherapy in head and neck cancer[J]. Mol Oncol, 2024, 18(2): 350–368. doi: 10.1002/1878-0261.13489.[Epubaheadofprint
|
[1] | Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080 |
[2] | Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071 |
[3] | Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144 |
[4] | Jinshan Tang, Ziqiang Zhu, Tao Sui, Dechao Kong, Xiaojian Cao. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies[J]. The Journal of Biomedical Research, 2014, 28(3): 228-239. DOI: 10.7555/JBR.28.20130159 |
[5] | Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004 |
[6] | Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1 |
[7] | Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0 |
[8] | Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1 |
[9] | Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8 |
[10] | Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241. |
1. | Hou W, Guan F, Chen W, et al. Breastfeeding, genetic susceptibility, and the risk of asthma and allergic diseases in children and adolescents: a retrospective national population-based cohort study. BMC Public Health, 2024, 24(1): 3056. DOI:10.1186/s12889-024-20501-0 |
2. | Nandi S, Varotariya K, Luhana S, et al. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics, 2024, 24(6): 203. DOI:10.1007/s10142-024-01477-x |
3. | Sung HL, Lin WY. Causal effects of cardiovascular health on five epigenetic clocks. Clin Epigenetics, 2024, 16(1): 134. DOI:10.1186/s13148-024-01752-5 |
4. | Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254 |
5. | Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602 |
6. | Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6 |
7. | Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207 |
8. | Han J, Zhang L, Yan R, et al. CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer. Genes (Basel), 2023, 14(3): 586. DOI:10.3390/genes14030586 |
9. | Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081 |
10. | Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8 |
11. | Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424. DOI:10.1186/s12967-022-03637-8 |
12. | Shao Z, Wang T, Qiao J, et al. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies. BMC Bioinformatics, 2022, 23(1): 359. DOI:10.1186/s12859-022-04897-3 |
13. | Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388. DOI:10.1111/jfd.13668 |
14. | Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2 |
15. | Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004. DOI:10.1093/bioadv/vbab004 |
16. | Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604 |
17. | Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314. DOI:10.1186/s12916-021-02186-z |
18. | Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080. DOI:10.3390/cells10113080 |
19. | Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418. DOI:10.1186/s12967-021-03090-z |
20. | Gao Y, Zhang J, Zhao H, et al. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet, 2021, 12: 651332. DOI:10.3389/fgene.2021.651332 |
21. | Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624. DOI:10.1093/advances/nmab045 |
22. | Muneeb M, Henschel A. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods. BMC Bioinformatics, 2021, 22(1): 198. DOI:10.1186/s12859-021-04077-9 |
23. | O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367. DOI:10.1007/978-1-0716-1138-8_19 |
24. | Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Comput Struct Biotechnol J, 2021, 19: 1579-1594. DOI:10.1016/j.csbj.2021.03.008 |
25. | Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545. DOI:10.3389/fgene.2021.656545 |
26. | McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z |
27. | Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6. DOI:10.1186/s13073-020-00820-8 |
28. | Ramanan VK, Wang X, Przybelski SA, et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun, 2020, 2(2): fcaa159. DOI:10.1093/braincomms/fcaa159 |
29. | Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461. DOI:10.3389/fgene.2020.592461 |
30. | Xiao L, Yuan Z, Jin S, et al. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet, 2020, 11: 587243. DOI:10.3389/fgene.2020.587243 |
31. | Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228. DOI:10.3390/nu12082228 |
32. | Kuo TT, Jiang X, Tang H, et al. iDASH secure genome analysis competition 2018: blockchain genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics, 2020, 13(Suppl 7): 98. DOI:10.1186/s12920-020-0715-0 |
33. | Padilla-Martínez F, Collin F, Kwasniewski M, et al. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci, 2020, 21(5): 1703. DOI:10.3390/ijms21051703 |
34. | Lan T, Yang B, Zhang X, et al. Statistical Methods and Software for Substance Use and Dependence Genetic Research. Curr Genomics, 2019, 20(3): 172-183. DOI:10.2174/1389202920666190617094930 |
35. | Gaudillo J, Rodriguez JJR, Nazareno A, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One, 2019, 14(12): e0225574. DOI:10.1371/journal.pone.0225574 |
36. | Romagnoni A, Jégou S, Van Steen K, et al. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep, 2019, 9(1): 10351. DOI:10.1038/s41598-019-46649-z |
37. | Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734. DOI:10.1177/2045125318814734 |
38. | Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11. DOI:10.1093/bioinformatics/bty472 |
39. | Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x |
40. | Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8 |
41. | Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6 |
42. | Läll K, Mägi R, Morris A, et al. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med, 2017, 19(3): 322-329. DOI:10.1038/gim.2016.103 |
43. | Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232. DOI:10.1371/journal.pone.0157232 |
44. | Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895 |
45. | Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309 |