Citation: | Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jawvascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220266 |
[1] |
Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression[J]. J Dent Res, 2014, 93(11): 1045–1053. doi: 10.1177/0022034514552491
|
[2] |
Slots J. Primer on etiology and treatment of progressive/severe periodontitis: a systemic health perspective[J]. Periodontol 2000, 2020, 83(1): 272–276. doi: 10.1111/prd.12325
|
[3] |
Lang NP, Berglundh T. Periimplant diseases: where are we now?--Consensus of the seventh european workshop on periodontology[J]. J Clin Periodontol, 2011, 38(Suppl 11): 178–181. doi: 10.1111/j.1600-051X.2010.01674.x
|
[4] |
Yan R, Jiang R, Hu L, et al. Establishment and assessment of rodent models of medication-related osteonecrosis of the jaw (MRONJ)[J]. Int J Oral Sci, 2022, 14(1): 41. doi: 10.1038/s41368-022-00182-4
|
[5] |
Gaudet C, Odet S, Meyer C, et al. Reporting criteria for clinical trials on medication-related osteonecrosis of the jaw (MRONJ): a review and recommendations[J]. Cells, 2022, 11(24): 4097. doi: 10.3390/cells11244097
|
[6] |
Aminoshariae A, Donaldson M, Horan M, et al. Emerging antiresorptive medications and their potential implications for dental surgeries[J]. J Am Dent Assoc, 2022, 153(7): 649–658. doi: 10.1016/j.adaj.2021.12.008
|
[7] |
Fusco V, Santini D, Armento G, et al. Osteonecrosis of jaw beyond antiresorptive (bone-targeted) agents: new horizons in oncology[J]. Expert Opin Drug Saf, 2016, 15(7): 925–935. doi: 10.1080/14740338.2016.1177021
|
[8] |
AlRowis R, Aldawood A, AlOtaibi M, et al. Medication-related osteonecrosis of the jaw (MRONJ): a review of pathophysiology, risk factors, preventive measures and treatment strategies[J]. Saudi Dent J, 2022, 34(3): 202–210. doi: 10.1016/j.sdentj.2022.01.003
|
[9] |
Chen H, Liu Z, Yue K, et al. Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws[J]. Cell Tissue Res, 2023, doi: 10.1007/s00441-023-03743-z. [Epub ahead of print].
|
[10] |
Singh A, Kitpanit S, Neal B, et al. Osteoradionecrosis of the jaw following proton radiation therapy for patients with head and neck cancer[J]. JAMA Otolaryngol Head Neck Surg, 2023, 149(2): 151–159. doi: 10.1001/jamaoto.2022.4165
|
[11] |
Kitaura H, Marahleh A, Ohori F, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption[J]. Int J Mol Sci, 2020, 21(14): 5169. doi: 10.3390/ijms21145169
|
[12] |
Almubarak A, Tanagala KKK, Papapanou PN, et al. Disruption of monocyte and macrophage homeostasis in periodontitis[J]. Front Immunol, 2020, 11: 330. doi: 10.3389/fimmu.2020.00330
|
[13] |
Reddy LVK, Murugan D, Mullick M, et al. Recent approaches for angiogenesis in search of successful tissue engineering and regeneration[J]. Curr Stem Cell Res Ther, 2020, 15(2): 111–134. doi: 10.2174/1574888X14666191104151928
|
[14] |
Mkonyi LE, Bakken V, Søvik JB, et al. Lymphangiogenesis is induced during development of periodontal disease[J]. J Dent Res, 2012, 91(1): 71–77. doi: 10.1177/0022034511424747
|
[15] |
Yang N, Liu Y. The role of the immune microenvironment in bone regeneration[J]. Int J Med Sci, 2021, 18(16): 3697–3707. doi: 10.7150/ijms.61080
|
[16] |
Csaki C, Matis U, Mobasheri A, et al. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation[J]. Histochem Cell Biol, 2009, 131(2): 251–266. doi: 10.1007/s00418-008-0524-6
|
[17] |
Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function[J]. Endocrinology, 2000, 141(9): 3478–3484. doi: 10.1210/endo.141.9.7634
|
[18] |
Lee JH, Choi YJ, Heo SH, et al. Tumor necrosis factor-α converting enzyme (TACE) increases RANKL expression in osteoblasts and serves as a potential biomarker of periodontitis[J]. BMB Rep, 2011, 44(7): 473–477. doi: 10.5483/BMBRep.2011.44.7.473
|
[19] |
Hayashi M, Nakashima T, Taniguchi M, et al. Osteoprotection by semaphorin 3A[J]. Nature, 2012, 485(7396): 69–74. doi: 10.1038/nature11000
|
[20] |
Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell, 1998, 93(2): 165–176. doi: 10.1016/S0092-8674(00)81569-X
|
[21] |
Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of C-Fms and receptor activator of nuclear factor κB (RANK) receptors[J]. J Exp Med, 1999, 190(12): 1741–1754. doi: 10.1084/jem.190.12.1741
|
[22] |
Engelmann J, Zarrer J, Gensch V, et al. Regulation of bone homeostasis by MERTK and TYRO3[J]. Nat Commun, 2022, 13(1): 7689. doi: 10.1038/s41467-022-33938-x
|
[23] |
Wu M, Chen W, Lu Y, et al. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway[J]. Nat Commun, 2017, 8: 13700. doi: 10.1038/ncomms13700
|
[24] |
Khotib J, Gani MA, Budiatin AS, et al. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: direct involvement of hydroxyapatite as a biomaterial[J]. Pharmaceuticals (Basel), 2021, 14(7): 615. doi: 10.3390/ph14070615
|
[25] |
Chen M, Cai W, Zhao S, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(6): 608–622. doi: 10.1111/jcpe.13112
|
[26] |
Xu Z, Wang X, Xiao D, et al. Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis[J]. Free Radic Biol Med, 2011, 50(10): 1314–1323. doi: 10.1016/j.freeradbiomed.2011.02.016
|
[27] |
El-Sayed KMF, Elahmady M, Adawi Z, et al. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: a new perspective[J]. J Periodontal Res, 2019, 54(2): 81–94. doi: 10.1111/jre.12616
|
[28] |
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges[J]. Cell Stem Cell, 2015, 17(1): 11–22. doi: 10.1016/j.stem.2015.06.007
|
[29] |
Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers[J]. Arch Biochem Biophys, 2014, 561: 3–12. doi: 10.1016/j.abb.2014.05.003
|
[30] |
Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells[J]. Gene, 2009, 433: 1–7. doi: 10.1016/j.gene.2008.12.008
|
[31] |
Wen Y, Yang H, Wu J, et al. COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells[J]. Theranostics, 2019, 9(15): 4265–4286. doi: 10.7150/thno.35914
|
[32] |
Kawai T, Katagiri W, Osugi M, et al. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration[J]. Cytotherapy, 2015, 17(4): 369–381. doi: 10.1016/j.jcyt.2014.11.009
|
[33] |
Katagiri W, Watanabe J, Toyama N, et al. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation[J]. Implant Dent, 2017, 26(4): 607–612. doi: 10.1097/ID.0000000000000618
|
[34] |
Katagiri W, Osugi M, Kawai T, et al. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells[J]. Head Face Med, 2016, 12: 5. doi: 10.1186/s13005-016-0101-5
|
[35] |
Huang Y, Zhang X, Zhan J, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3[J]. J Cell Mol Med, 2021, 25(16): 7734–7745. doi: 10.1111/jcmm.16654
|
[36] |
Chew JRJ, Chuah SJ, Teo KYW, et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration[J]. Acta Biomater, 2019, 89: 252–264. doi: 10.1016/j.actbio.2019.03.021
|
[37] |
Kang MS, Moon JH, Park SC, et al. Spirulina maxima reduces inflammation and alveolar bone loss in Porphyromonas gingivalis-induced periodontitis[J]. Phytomedicine, 2021, 81: 153420. doi: 10.1016/j.phymed.2020.153420
|
[38] |
Inada M, Yasui T, Nomura S, et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice[J]. Dev Dyn, 1999, 214(4): 279–290. doi: 10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W
|
[39] |
Maruyama Z, Yoshida CA, Furuichi T, et al. Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency[J]. Dev Dyn, 2007, 236(7): 1876–1890. doi: 10.1002/dvdy.21187
|
[40] |
Tang C, Chen W, Luo Y, et al. Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis[J]. Biochem J, 2020, 477(13): 2421–2438. doi: 10.1042/BCJ20200036
|
[41] |
Bai Y, Zhang Q, Chen Q, et al. Conditional knockout of the PDK-1 gene in osteoblasts affects osteoblast differentiation and bone formation[J]. J Cell Physiol, 2021, 236(7): 5432–5445. doi: 10.1002/jcp.30249
|
[42] |
Tanaka EM. The molecular and cellular choreography of appendage regeneration[J]. Cell, 2016, 165(7): 1598–1608. doi: 10.1016/j.cell.2016.05.038
|
[43] |
Geurtzen K, Knopf F, Wehner D, et al. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull[J]. Development, 2014, 141(11): 2225–2234. doi: 10.1242/dev.105817
|
[44] |
Mishra R, Sehring I, Cederlund M, et al. NF-κB signaling negatively regulates osteoblast dedifferentiation during zebrafish bone regeneration[J]. Dev Cell, 2020, 52(2): 167–182.e7. doi: 10.1016/j.devcel.2019.11.016
|
[45] |
Yuh DY, Maekawa T, Li X, et al. The secreted protein DEL-1 activates a β3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration[J]. J Biol Chem, 2020, 295(21): 7261–7273. doi: 10.1074/jbc.RA120.013024
|
[46] |
Lin Z, He H, Wang M, et al. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate[J]. Cell Prolif, 2019, 52(6): e12688. doi: 10.1111/cpr.12688
|
[47] |
Kang M, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles[J]. Bone, 2020, 141: 115627. doi: 10.1016/j.bone.2020.115627
|
[48] |
Jiang C, Lin Y, Shan H, et al. miR-146a protects against Staphylococcus aureus-induced osteomyelitis by regulating inflammation and osteogenesis[J]. ACS Infect Dis, 2022, 8(5): 918–927. doi: 10.1021/acsinfecdis.1c00459
|
[49] |
Han L, Wang B, Wang R, et al. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor[J]. Stem Cell Res Ther, 2019, 10(1): 377. doi: 10.1186/s13287-019-1498-0
|
[50] |
Mobasheri A, Shakibaei M. Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis[J]. Ann N Y Acad Sci, 2013, 1290(1): 59–66. doi: 10.1111/nyas.12145
|
[51] |
Vidoni C, Ferraresi A, Secomandi E, et al. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells[J]. Cell Commun Signal, 2019, 17(1): 98. doi: 10.1186/s12964-019-0414-7
|
[52] |
Yin N, Zhu L, Ding L, et al. MiR-135–5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells[J]. Cell Mol Biol Lett, 2019, 24: 51. doi: 10.1186/s11658-019-0177-6
|
[53] |
Ida-Yonemochi H, Nakagawa E, Takata H, et al. Extracellular enzymatically synthesized glycogen promotes osteogenesis by activating osteoblast differentiation via Akt/GSK-3β signaling pathway[J]. J Cell Physiol, 2019, 234(8): 13602–13616. doi: 10.1002/jcp.28039
|
[54] |
Xiao L, Zhou Y, Zhu L, et al. SPHK1-S1PR1-RANKL axis regulates the interactions between macrophages and BMSCs in inflammatory bone loss[J]. J Bone Miner Res, 2018, 33(6): 1090–1104. doi: 10.1002/jbmr.3396
|
[55] |
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol Mech Dis, 2020, 15: 123–147. doi: 10.1146/annurev-pathmechdis-012418-012718
|
[56] |
Araujo-Pires AC, Vieira AE, Francisconi CF, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis[J]. J Bone Miner Res, 2015, 30(3): 412–422. doi: 10.1002/jbmr.2376
|
[57] |
Shi M, Zhang P, Zhao Q, et al. Dual functional monocytes modulate bactericidal and anti-inflammation process for severe osteomyelitis treatment[J]. Small, 2020, 16(4): 1905185. doi: 10.1002/smll.201905185
|
[58] |
Pesce Viglietti AI, Sviercz FA, López CAM, et al. Proinflammatory microenvironment during Kingella kingae infection modulates osteoclastogenesis[J]. Front Immunol, 2021, 12: 757827. doi: 10.3389/fimmu.2021.757827
|
[59] |
Huynh NCN, Everts V, Pavasant P, et al. Interleukin-1β induces human cementoblasts to support osteoclastogenesis[J]. Int J Oral Sci, 2017, 9(12): e5. doi: 10.1038/ijos.2017.45
|
[60] |
Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, et al. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss[J]. Oral Dis, 2022, 28(6): 1441–1447. doi: 10.1111/odi.13884
|
[61] |
Wehrhan F, Moebius P, Amann K, et al. Macrophage and osteoclast polarization in bisphosphonate associated necrosis and osteoradionecrosis[J]. J Cranio-Maxillofac Surg, 2017, 45(6): 944–953. doi: 10.1016/j.jcms.2017.02.023
|
[62] |
Yang J, Zhu Y, Duan D, et al. Enhanced activity of macrophage M1/M2 phenotypes in periodontitis[J]. Arch Oral Biol, 2018, 96: 234–242. doi: 10.1016/j.archoralbio.2017.03.006
|
[63] |
Qin S, Li J, Zhou C, et al. SHIP-1 regulates phagocytosis and M2 polarization through the PI3K/Akt-STAT5-Trib1 circuit in pseudomonas aeruginosa infection[J]. Front Immunol, 2020, 11: 307. doi: 10.3389/fimmu.2020.00307
|
[64] |
Guo X, Li T, Xu Y, et al. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice[J]. J Biol Chem, 2017, 292(34): 14003–14015. doi: 10.1074/jbc.M117.802066
|
[65] |
Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polarization and osteoporosis: a review[J]. Nutrients, 2020, 12(10): 2999. doi: 10.3390/nu12102999
|
[66] |
Guo Y, Wang M, Zhang S, et al. Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling[J]. EMBO J, 2018, 37(20): e99398. https://pubmed.ncbi.nlm.nih.gov/30181118/
|
[67] |
Zhuang Z, Yoshizawa-Smith S, Glowacki A, et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models[J]. J Dent Res, 2019, 98(2): 200–208. doi: 10.1177/0022034518805984
|
[68] |
Chen X, Wan Z, Yang L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA[J]. J Nanobiotechnol, 2022, 20(1): 110. doi: 10.1186/s12951-022-01314-y
|
[69] |
Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun, 2021, 12(1): 2885. doi: 10.1038/s41467-021-23005-2
|
[70] |
Teng YTA, Nguyen H, Gao X, et al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection[J]. J Clin Invest, 2000, 106(6): R59–R67. doi: 10.1172/JCI10763
|
[71] |
Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products[J]. Jpn Dent Sci Rev, 2020, 56(1): 90–96. doi: 10.1016/j.jdsr.2020.04.002
|
[72] |
Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption[J]. Crit Rev Oral Biol Med, 2001, 12(2): 125–135. doi: 10.1177/10454411010120020301
|
[73] |
Le Gros G, Ben-Sasson SZ, Seder R, et al. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells[J]. J Exp Med, 1990, 172(3): 921–929. doi: 10.1084/jem.172.3.921
|
[74] |
Hasiakos S, Gwack Y, Kang M, et al. Calcium signaling in T cells and chronic inflammatory disorders of the oral cavity[J]. J Dent Res, 2021, 100(7): 693–699. doi: 10.1177/0022034521990652
|
[75] |
Castillo F, Monasterio G, Ibarra JP, et al. Levels of low-molecular-weight hyaluronan in periodontitis-treated patients and its immunostimulatory effects on CD4+ T lymphocytes[J]. Clin Oral Investig, 2021, 25(8): 4987–5000. doi: 10.1007/s00784-021-03808-9
|
[76] |
Tyagi AM, Srivastava K, Kureel J, et al. Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss[J]. Osteoporos Int, 2012, 23(3): 1151–1161. doi: 10.1007/s00198-011-1650-x
|
[77] |
Alvarez C, Suliman S, Almarhoumi R, et al. Regulatory T cell phenotype and anti-osteoclastogenic function in experimental periodontitis[J]. Sci Rep, 2020, 10(1): 19018. doi: 10.1038/s41598-020-76038-w
|
[78] |
Zheng Y, Dong C, Yang J, et al. Exosomal microRNA-155–5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019, 234(11): 20662–20674. doi: 10.1002/jcp.28671
|
[79] |
Donate PB, de Lima KA, Peres RS, et al. Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis[J]. Proc Natl Acad Sci USA, 2021, 118(1): e2017120118. doi: 10.1073/pnas.2017120118
|
[80] |
Tyagi AM, Yu M, Darby TM, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6): 1116–1131.e7. doi: 10.1016/j.immuni.2018.10.013
|
[81] |
Mahanonda R, Champaiboon C, Subbalekha K, et al. Human memory B cells in healthy gingiva, gingivitis, and periodontitis[J]. J Immunol, 2016, 197(3): 715–725. doi: 10.4049/jimmunol.1600540
|
[82] |
Wang Y, Liu J, Burrows PD, et al. B cell development and maturation[M]//Wang J. B Cells in Immunity and Tolerance. Singapore: Springer, 2020: 1–22.
|
[83] |
Wang Y, Yu X, Lin J, et al. B10 cells alleviate periodontal bone loss in experimental periodontitis[J]. Infect Immun, 2017, 85(9): e00335–17. doi: 10.1128/IAI.00335-17
|
[84] |
Yu P, Hu Y, Liu Z, et al. Local induction of B cell interleukin-10 competency alleviates inflammation and bone loss in ligature-induced experimental periodontitis in mice[J]. Infect Immun, 2017, 85(1): e00645–16. doi: 10.1128/IAI.00645-16
|
[85] |
Zeng W, Liu G, Luan Q, et al. B-cell deficiency exacerbates inflammation and bone loss in ligature-induced experimental periodontitis in mice[J]. J Inflamm Res, 2021, 14: 5367–5380. doi: 10.2147/JIR.S330875
|
[86] |
Qin Y, Zhang M, Jiang R, et al. B10 cells play a role in the immune modulation of pro- and anti-inflammatory immune responses in mouse islet allograft rejection[J]. Cell Immunol, 2016, 310: 184–192. doi: 10.1016/j.cellimm.2016.09.010
|
[87] |
Han Y, Yu C, Yu Y, et al. CD25+ B cells produced IL-35 and alleviated local inflammation during experimental periodontitis[J]. Oral Dis, 2022, 28(8): 2248–2257. doi: 10.1111/odi.13939
|
[88] |
Zhang Q, Chen B, Yan F, et al. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases[J]. Biomed Res Int, 2014, 2014: 284836. doi: 10.1155/2014/284836
|
[89] |
Krüger-Genge A, Blocki A, Franke RP, et al. Vascular endothelial cell biology: an update[J]. Int J Mol Sci, 2019, 20(18): 4411. doi: 10.3390/ijms20184411
|
[90] |
Yang Y, Li S, Sun X, et al. CCN1 secreted by human adipose-derived stem cells enhances wound healing and promotes angiogenesis through activating the AKT signalling pathway[J]. Int Wound J, 2023, 20(5): 1667–1677. doi: 10.1111/iwj.14028
|
[91] |
Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases[J]. Ann N Y Acad Sci, 2020, 1474(1): 5–14. doi: 10.1111/nyas.14348
|
[92] |
Diomede F, Marconi GD, Fonticoli L, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration[J]. Int J Mol Sci, 2020, 21(9): 3242. doi: 10.3390/ijms21093242
|
[93] |
Pizzicannella J, Gugliandolo A, Orsini T, et al. Engineered extracellular vesicles from human periodontal-ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration[J]. Front Physiol, 2019, 10: 512. doi: 10.3389/fphys.2019.00512
|
[94] |
Ogilvie CM, Lu C, Marcucio R, et al. Vascular endothelial growth factor improves bone repair in a murine nonunion model[J]. Iowa Orthop J, 2012, 32: 90–94. https://pubmed.ncbi.nlm.nih.gov/23576927/
|
[95] |
Kim BS, Yang SS, You HK, et al. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair[J]. J Tissue Eng Regen Med, 2018, 12(3): e1311–e1324. doi: 10.1002/term.2509
|
[96] |
Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels[J]. Dev Cell, 2010, 19(2): 329–344. doi: 10.1016/j.devcel.2010.07.010
|
[97] |
Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376–380. doi: 10.1038/nature13146
|
[98] |
Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer[J]. Cancer Res, 2008, 68(2): 537–544. doi: 10.1158/0008-5472.CAN-07-5682
|
[99] |
Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nat Cell Biol, 2009, 11(12): 1487–1495. doi: 10.1038/ncb1998
|
[100] |
Fu R, Lv W, Xu Y, et al. Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis[J]. Nat Commun, 2020, 11(1): 460. doi: 10.1038/s41467-019-14076-3
|
[101] |
Liu X, Li Q, Niu X, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232–244. doi: 10.7150/ijbs.16951
|
[102] |
Jia Y, Zhu Y, Qiu S, et al. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis[J]. Stem Cell Res Ther, 2019, 10(1): 12. doi: 10.1186/s13287-018-1115-7
|
[103] |
Zhou H, Li X, Wu R, et al. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling[J]. Cell Prolif, 2021, 54(5): e13026. doi: 10.1111/CPR.13026
|
[104] |
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise[J]. Cell, 2010, 140(4): 460–476. doi: 10.1016/j.cell.2010.01.045
|
[105] |
Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease[J]. J Cell Biol, 2011, 193(4): 607–618. doi: 10.1083/jcb.201012094
|
[106] |
Poto R, Loffredo S, Palestra F, et al. Angiogenesis, lymphangiogenesis, and inflammation in chronic obstructive pulmonary disease (COPD): few certainties and many outstanding questions[J]. Cells, 2022, 11(10): 1720. doi: 10.3390/cells11101720
|
[107] |
Matilla L, Martín-Núñez E, Garaikoetxea M, et al. Characterization of the sex-specific pattern of angiogenesis and lymphangiogenesis in aortic stenosis[J]. Front Cardiovasc Med, 2022, 9: 971802. doi: 10.3389/fcvm.2022.971802
|
[108] |
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration[J]. Nat Rev Cardiol, 2021, 18(5): 368–379. doi: 10.1038/s41569-020-00489-x
|
[109] |
Biswas L, Chen J, De Angelis J, et al. Lymphatic vessels in bone support regeneration after injury[J]. Cell, 2023, 186(2): 382–397.e24. doi: 10.1016/j.cell.2022.12.031
|
[110] |
Kim H, Kataru RP, Koh GY. Inflammation-associated lymphangiogenesis: a double-edged sword?[J]. J Clin Invest, 2014, 124(3): 936–942. doi: 10.1172/JCI71607
|
[111] |
Ogata F, Fujiu K, Matsumoto S, et al. Excess lymphangiogenesis cooperatively induced by macrophages and CD4+ T cells drives the pathogenesis of lymphedema[J]. J Invest Dermatol, 2016, 136(3): 706–714. doi: 10.1016/j.jid.2015.12.001
|
[112] |
Shi J, Liang Q, Zuscik M, et al. Distribution and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice[J]. Arthritis Rheumatol, 2014, 66(3): 657–666. doi: 10.1002/art.38278
|
[113] |
Shen X, Zhu W, Zhang P, et al. Macrophage miR-149–5p induction is a key driver and therapeutic target for BRONJ[J]. JCI Insight, 2022, 7(16): e159865. doi: 10.1172/jci.insight.159865
|
[114] |
Wang H, Chen Y, Li W, et al. Effect of VEGFC on lymph flow and inflammation-induced alveolar bone loss[J]. J Pathol, 2020, 251(3): 323–335. doi: 10.1002/path.5456
|
[115] |
Murakami J, Ishii M, Suehiro F, et al. Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway[J]. Biochem Biophys Res Commun, 2017, 484(3): 710–718. doi: 10.1016/j.bbrc.2017.02.001
|
[116] |
Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123: 14–21. doi: 10.1016/j.semcdb.2021.05.014
|
[117] |
Breslin JW, Yang Y, Scallan JP, et al. Lymphatic vessel network structure and physiology[J]. Compr Physiol, 2018, 9(1): 207–299. doi: 10.1002/cphy.c180015
|