• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jawvascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220266
Citation: Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jawvascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220266

Molecular events in the jawvascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases

doi: 10.7555/JBR.36.20220266
More Information
  • Corresponding author: Yuli Wang and Yifei Du, Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, 1 Shanghai Road, Gulou District, Nanjing, Jiangsu 210029, China. Tel: +86-25-69593361 and +86-25-69593372, E-mails: njykdwyl@njmu.edu.cn and dyf@njmu.edu.cn; Feng Han, International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86868462, E-mail: fenghan169@njmu.edu.cn
  • Received: 2022-12-27
  • Revised: 2023-02-28
  • Accepted: 2023-03-08
  • Published: 2023-04-28
  • Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive further research in this field.


  • CLC number: R782, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression[J]. J Dent Res, 2014, 93(11): 1045–1053. doi: 10.1177/0022034514552491
    Slots J. Primer on etiology and treatment of progressive/severe periodontitis: a systemic health perspective[J]. Periodontol 2000, 2020, 83(1): 272–276. doi: 10.1111/prd.12325
    Lang NP, Berglundh T. Periimplant diseases: where are we now?--Consensus of the seventh european workshop on periodontology[J]. J Clin Periodontol, 2011, 38(Suppl 11): 178–181. doi: 10.1111/j.1600-051X.2010.01674.x
    Yan R, Jiang R, Hu L, et al. Establishment and assessment of rodent models of medication-related osteonecrosis of the jaw (MRONJ)[J]. Int J Oral Sci, 2022, 14(1): 41. doi: 10.1038/s41368-022-00182-4
    Gaudet C, Odet S, Meyer C, et al. Reporting criteria for clinical trials on medication-related osteonecrosis of the jaw (MRONJ): a review and recommendations[J]. Cells, 2022, 11(24): 4097. doi: 10.3390/cells11244097
    Aminoshariae A, Donaldson M, Horan M, et al. Emerging antiresorptive medications and their potential implications for dental surgeries[J]. J Am Dent Assoc, 2022, 153(7): 649–658. doi: 10.1016/j.adaj.2021.12.008
    Fusco V, Santini D, Armento G, et al. Osteonecrosis of jaw beyond antiresorptive (bone-targeted) agents: new horizons in oncology[J]. Expert Opin Drug Saf, 2016, 15(7): 925–935. doi: 10.1080/14740338.2016.1177021
    AlRowis R, Aldawood A, AlOtaibi M, et al. Medication-related osteonecrosis of the jaw (MRONJ): a review of pathophysiology, risk factors, preventive measures and treatment strategies[J]. Saudi Dent J, 2022, 34(3): 202–210. doi: 10.1016/j.sdentj.2022.01.003
    Chen H, Liu Z, Yue K, et al. Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws[J]. Cell Tissue Res, 2023, doi: 10.1007/s00441-023-03743-z. [Epub ahead of print].
    Singh A, Kitpanit S, Neal B, et al. Osteoradionecrosis of the jaw following proton radiation therapy for patients with head and neck cancer[J]. JAMA Otolaryngol Head Neck Surg, 2023, 149(2): 151–159. doi: 10.1001/jamaoto.2022.4165
    Kitaura H, Marahleh A, Ohori F, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption[J]. Int J Mol Sci, 2020, 21(14): 5169. doi: 10.3390/ijms21145169
    Almubarak A, Tanagala KKK, Papapanou PN, et al. Disruption of monocyte and macrophage homeostasis in periodontitis[J]. Front Immunol, 2020, 11: 330. doi: 10.3389/fimmu.2020.00330
    Reddy LVK, Murugan D, Mullick M, et al. Recent approaches for angiogenesis in search of successful tissue engineering and regeneration[J]. Curr Stem Cell Res Ther, 2020, 15(2): 111–134. doi: 10.2174/1574888X14666191104151928
    Mkonyi LE, Bakken V, Søvik JB, et al. Lymphangiogenesis is induced during development of periodontal disease[J]. J Dent Res, 2012, 91(1): 71–77. doi: 10.1177/0022034511424747
    Yang N, Liu Y. The role of the immune microenvironment in bone regeneration[J]. Int J Med Sci, 2021, 18(16): 3697–3707. doi: 10.7150/ijms.61080
    Csaki C, Matis U, Mobasheri A, et al. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation[J]. Histochem Cell Biol, 2009, 131(2): 251–266. doi: 10.1007/s00418-008-0524-6
    Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function[J]. Endocrinology, 2000, 141(9): 3478–3484. doi: 10.1210/endo.141.9.7634
    Lee JH, Choi YJ, Heo SH, et al. Tumor necrosis factor-α converting enzyme (TACE) increases RANKL expression in osteoblasts and serves as a potential biomarker of periodontitis[J]. BMB Rep, 2011, 44(7): 473–477. doi: 10.5483/BMBRep.2011.44.7.473
    Hayashi M, Nakashima T, Taniguchi M, et al. Osteoprotection by semaphorin 3A[J]. Nature, 2012, 485(7396): 69–74. doi: 10.1038/nature11000
    Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell, 1998, 93(2): 165–176. doi: 10.1016/S0092-8674(00)81569-X
    Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of C-Fms and receptor activator of nuclear factor κB (RANK) receptors[J]. J Exp Med, 1999, 190(12): 1741–1754. doi: 10.1084/jem.190.12.1741
    Engelmann J, Zarrer J, Gensch V, et al. Regulation of bone homeostasis by MERTK and TYRO3[J]. Nat Commun, 2022, 13(1): 7689. doi: 10.1038/s41467-022-33938-x
    Wu M, Chen W, Lu Y, et al. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway[J]. Nat Commun, 2017, 8: 13700. doi: 10.1038/ncomms13700
    Khotib J, Gani MA, Budiatin AS, et al. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: direct involvement of hydroxyapatite as a biomaterial[J]. Pharmaceuticals (Basel), 2021, 14(7): 615. doi: 10.3390/ph14070615
    Chen M, Cai W, Zhao S, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(6): 608–622. doi: 10.1111/jcpe.13112
    Xu Z, Wang X, Xiao D, et al. Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis[J]. Free Radic Biol Med, 2011, 50(10): 1314–1323. doi: 10.1016/j.freeradbiomed.2011.02.016
    El-Sayed KMF, Elahmady M, Adawi Z, et al. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: a new perspective[J]. J Periodontal Res, 2019, 54(2): 81–94. doi: 10.1111/jre.12616
    Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges[J]. Cell Stem Cell, 2015, 17(1): 11–22. doi: 10.1016/j.stem.2015.06.007
    Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers[J]. Arch Biochem Biophys, 2014, 561: 3–12. doi: 10.1016/j.abb.2014.05.003
    Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells[J]. Gene, 2009, 433: 1–7. doi: 10.1016/j.gene.2008.12.008
    Wen Y, Yang H, Wu J, et al. COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells[J]. Theranostics, 2019, 9(15): 4265–4286. doi: 10.7150/thno.35914
    Kawai T, Katagiri W, Osugi M, et al. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration[J]. Cytotherapy, 2015, 17(4): 369–381. doi: 10.1016/j.jcyt.2014.11.009
    Katagiri W, Watanabe J, Toyama N, et al. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation[J]. Implant Dent, 2017, 26(4): 607–612. doi: 10.1097/ID.0000000000000618
    Katagiri W, Osugi M, Kawai T, et al. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells[J]. Head Face Med, 2016, 12: 5. doi: 10.1186/s13005-016-0101-5
    Huang Y, Zhang X, Zhan J, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3[J]. J Cell Mol Med, 2021, 25(16): 7734–7745. doi: 10.1111/jcmm.16654
    Chew JRJ, Chuah SJ, Teo KYW, et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration[J]. Acta Biomater, 2019, 89: 252–264. doi: 10.1016/j.actbio.2019.03.021
    Kang MS, Moon JH, Park SC, et al. Spirulina maxima reduces inflammation and alveolar bone loss in Porphyromonas gingivalis-induced periodontitis[J]. Phytomedicine, 2021, 81: 153420. doi: 10.1016/j.phymed.2020.153420
    Inada M, Yasui T, Nomura S, et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice[J]. Dev Dyn, 1999, 214(4): 279–290. doi: 10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W
    Maruyama Z, Yoshida CA, Furuichi T, et al. Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency[J]. Dev Dyn, 2007, 236(7): 1876–1890. doi: 10.1002/dvdy.21187
    Tang C, Chen W, Luo Y, et al. Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis[J]. Biochem J, 2020, 477(13): 2421–2438. doi: 10.1042/BCJ20200036
    Bai Y, Zhang Q, Chen Q, et al. Conditional knockout of the PDK-1 gene in osteoblasts affects osteoblast differentiation and bone formation[J]. J Cell Physiol, 2021, 236(7): 5432–5445. doi: 10.1002/jcp.30249
    Tanaka EM. The molecular and cellular choreography of appendage regeneration[J]. Cell, 2016, 165(7): 1598–1608. doi: 10.1016/j.cell.2016.05.038
    Geurtzen K, Knopf F, Wehner D, et al. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull[J]. Development, 2014, 141(11): 2225–2234. doi: 10.1242/dev.105817
    Mishra R, Sehring I, Cederlund M, et al. NF-κB signaling negatively regulates osteoblast dedifferentiation during zebrafish bone regeneration[J]. Dev Cell, 2020, 52(2): 167–182.e7. doi: 10.1016/j.devcel.2019.11.016
    Yuh DY, Maekawa T, Li X, et al. The secreted protein DEL-1 activates a β3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration[J]. J Biol Chem, 2020, 295(21): 7261–7273. doi: 10.1074/jbc.RA120.013024
    Lin Z, He H, Wang M, et al. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate[J]. Cell Prolif, 2019, 52(6): e12688. doi: 10.1111/cpr.12688
    Kang M, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles[J]. Bone, 2020, 141: 115627. doi: 10.1016/j.bone.2020.115627
    Jiang C, Lin Y, Shan H, et al. miR-146a protects against Staphylococcus aureus-induced osteomyelitis by regulating inflammation and osteogenesis[J]. ACS Infect Dis, 2022, 8(5): 918–927. doi: 10.1021/acsinfecdis.1c00459
    Han L, Wang B, Wang R, et al. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor[J]. Stem Cell Res Ther, 2019, 10(1): 377. doi: 10.1186/s13287-019-1498-0
    Mobasheri A, Shakibaei M. Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis[J]. Ann N Y Acad Sci, 2013, 1290(1): 59–66. doi: 10.1111/nyas.12145
    Vidoni C, Ferraresi A, Secomandi E, et al. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells[J]. Cell Commun Signal, 2019, 17(1): 98. doi: 10.1186/s12964-019-0414-7
    Yin N, Zhu L, Ding L, et al. MiR-135–5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells[J]. Cell Mol Biol Lett, 2019, 24: 51. doi: 10.1186/s11658-019-0177-6
    Ida-Yonemochi H, Nakagawa E, Takata H, et al. Extracellular enzymatically synthesized glycogen promotes osteogenesis by activating osteoblast differentiation via Akt/GSK-3β signaling pathway[J]. J Cell Physiol, 2019, 234(8): 13602–13616. doi: 10.1002/jcp.28039
    Xiao L, Zhou Y, Zhu L, et al. SPHK1-S1PR1-RANKL axis regulates the interactions between macrophages and BMSCs in inflammatory bone loss[J]. J Bone Miner Res, 2018, 33(6): 1090–1104. doi: 10.1002/jbmr.3396
    Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol Mech Dis, 2020, 15: 123–147. doi: 10.1146/annurev-pathmechdis-012418-012718
    Araujo-Pires AC, Vieira AE, Francisconi CF, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis[J]. J Bone Miner Res, 2015, 30(3): 412–422. doi: 10.1002/jbmr.2376
    Shi M, Zhang P, Zhao Q, et al. Dual functional monocytes modulate bactericidal and anti-inflammation process for severe osteomyelitis treatment[J]. Small, 2020, 16(4): 1905185. doi: 10.1002/smll.201905185
    Pesce Viglietti AI, Sviercz FA, López CAM, et al. Proinflammatory microenvironment during Kingella kingae infection modulates osteoclastogenesis[J]. Front Immunol, 2021, 12: 757827. doi: 10.3389/fimmu.2021.757827
    Huynh NCN, Everts V, Pavasant P, et al. Interleukin-1β induces human cementoblasts to support osteoclastogenesis[J]. Int J Oral Sci, 2017, 9(12): e5. doi: 10.1038/ijos.2017.45
    Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, et al. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss[J]. Oral Dis, 2022, 28(6): 1441–1447. doi: 10.1111/odi.13884
    Wehrhan F, Moebius P, Amann K, et al. Macrophage and osteoclast polarization in bisphosphonate associated necrosis and osteoradionecrosis[J]. J Cranio-Maxillofac Surg, 2017, 45(6): 944–953. doi: 10.1016/j.jcms.2017.02.023
    Yang J, Zhu Y, Duan D, et al. Enhanced activity of macrophage M1/M2 phenotypes in periodontitis[J]. Arch Oral Biol, 2018, 96: 234–242. doi: 10.1016/j.archoralbio.2017.03.006
    Qin S, Li J, Zhou C, et al. SHIP-1 regulates phagocytosis and M2 polarization through the PI3K/Akt-STAT5-Trib1 circuit in pseudomonas aeruginosa infection[J]. Front Immunol, 2020, 11: 307. doi: 10.3389/fimmu.2020.00307
    Guo X, Li T, Xu Y, et al. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice[J]. J Biol Chem, 2017, 292(34): 14003–14015. doi: 10.1074/jbc.M117.802066
    Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polarization and osteoporosis: a review[J]. Nutrients, 2020, 12(10): 2999. doi: 10.3390/nu12102999
    Guo Y, Wang M, Zhang S, et al. Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling[J]. EMBO J, 2018, 37(20): e99398. https://pubmed.ncbi.nlm.nih.gov/30181118/
    Zhuang Z, Yoshizawa-Smith S, Glowacki A, et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models[J]. J Dent Res, 2019, 98(2): 200–208. doi: 10.1177/0022034518805984
    Chen X, Wan Z, Yang L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA[J]. J Nanobiotechnol, 2022, 20(1): 110. doi: 10.1186/s12951-022-01314-y
    Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun, 2021, 12(1): 2885. doi: 10.1038/s41467-021-23005-2
    Teng YTA, Nguyen H, Gao X, et al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection[J]. J Clin Invest, 2000, 106(6): R59–R67. doi: 10.1172/JCI10763
    Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products[J]. Jpn Dent Sci Rev, 2020, 56(1): 90–96. doi: 10.1016/j.jdsr.2020.04.002
    Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption[J]. Crit Rev Oral Biol Med, 2001, 12(2): 125–135. doi: 10.1177/10454411010120020301
    Le Gros G, Ben-Sasson SZ, Seder R, et al. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells[J]. J Exp Med, 1990, 172(3): 921–929. doi: 10.1084/jem.172.3.921
    Hasiakos S, Gwack Y, Kang M, et al. Calcium signaling in T cells and chronic inflammatory disorders of the oral cavity[J]. J Dent Res, 2021, 100(7): 693–699. doi: 10.1177/0022034521990652
    Castillo F, Monasterio G, Ibarra JP, et al. Levels of low-molecular-weight hyaluronan in periodontitis-treated patients and its immunostimulatory effects on CD4+ T lymphocytes[J]. Clin Oral Investig, 2021, 25(8): 4987–5000. doi: 10.1007/s00784-021-03808-9
    Tyagi AM, Srivastava K, Kureel J, et al. Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss[J]. Osteoporos Int, 2012, 23(3): 1151–1161. doi: 10.1007/s00198-011-1650-x
    Alvarez C, Suliman S, Almarhoumi R, et al. Regulatory T cell phenotype and anti-osteoclastogenic function in experimental periodontitis[J]. Sci Rep, 2020, 10(1): 19018. doi: 10.1038/s41598-020-76038-w
    Zheng Y, Dong C, Yang J, et al. Exosomal microRNA-155–5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019, 234(11): 20662–20674. doi: 10.1002/jcp.28671
    Donate PB, de Lima KA, Peres RS, et al. Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis[J]. Proc Natl Acad Sci USA, 2021, 118(1): e2017120118. doi: 10.1073/pnas.2017120118
    Tyagi AM, Yu M, Darby TM, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6): 1116–1131.e7. doi: 10.1016/j.immuni.2018.10.013
    Mahanonda R, Champaiboon C, Subbalekha K, et al. Human memory B cells in healthy gingiva, gingivitis, and periodontitis[J]. J Immunol, 2016, 197(3): 715–725. doi: 10.4049/jimmunol.1600540
    Wang Y, Liu J, Burrows PD, et al. B cell development and maturation[M]//Wang J. B Cells in Immunity and Tolerance. Singapore: Springer, 2020: 1–22.
    Wang Y, Yu X, Lin J, et al. B10 cells alleviate periodontal bone loss in experimental periodontitis[J]. Infect Immun, 2017, 85(9): e00335–17. doi: 10.1128/IAI.00335-17
    Yu P, Hu Y, Liu Z, et al. Local induction of B cell interleukin-10 competency alleviates inflammation and bone loss in ligature-induced experimental periodontitis in mice[J]. Infect Immun, 2017, 85(1): e00645–16. doi: 10.1128/IAI.00645-16
    Zeng W, Liu G, Luan Q, et al. B-cell deficiency exacerbates inflammation and bone loss in ligature-induced experimental periodontitis in mice[J]. J Inflamm Res, 2021, 14: 5367–5380. doi: 10.2147/JIR.S330875
    Qin Y, Zhang M, Jiang R, et al. B10 cells play a role in the immune modulation of pro- and anti-inflammatory immune responses in mouse islet allograft rejection[J]. Cell Immunol, 2016, 310: 184–192. doi: 10.1016/j.cellimm.2016.09.010
    Han Y, Yu C, Yu Y, et al. CD25+ B cells produced IL-35 and alleviated local inflammation during experimental periodontitis[J]. Oral Dis, 2022, 28(8): 2248–2257. doi: 10.1111/odi.13939
    Zhang Q, Chen B, Yan F, et al. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases[J]. Biomed Res Int, 2014, 2014: 284836. doi: 10.1155/2014/284836
    Krüger-Genge A, Blocki A, Franke RP, et al. Vascular endothelial cell biology: an update[J]. Int J Mol Sci, 2019, 20(18): 4411. doi: 10.3390/ijms20184411
    Yang Y, Li S, Sun X, et al. CCN1 secreted by human adipose-derived stem cells enhances wound healing and promotes angiogenesis through activating the AKT signalling pathway[J]. Int Wound J, 2023, 20(5): 1667–1677. doi: 10.1111/iwj.14028
    Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases[J]. Ann N Y Acad Sci, 2020, 1474(1): 5–14. doi: 10.1111/nyas.14348
    Diomede F, Marconi GD, Fonticoli L, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration[J]. Int J Mol Sci, 2020, 21(9): 3242. doi: 10.3390/ijms21093242
    Pizzicannella J, Gugliandolo A, Orsini T, et al. Engineered extracellular vesicles from human periodontal-ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration[J]. Front Physiol, 2019, 10: 512. doi: 10.3389/fphys.2019.00512
    Ogilvie CM, Lu C, Marcucio R, et al. Vascular endothelial growth factor improves bone repair in a murine nonunion model[J]. Iowa Orthop J, 2012, 32: 90–94. https://pubmed.ncbi.nlm.nih.gov/23576927/
    Kim BS, Yang SS, You HK, et al. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair[J]. J Tissue Eng Regen Med, 2018, 12(3): e1311–e1324. doi: 10.1002/term.2509
    Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels[J]. Dev Cell, 2010, 19(2): 329–344. doi: 10.1016/j.devcel.2010.07.010
    Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376–380. doi: 10.1038/nature13146
    Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer[J]. Cancer Res, 2008, 68(2): 537–544. doi: 10.1158/0008-5472.CAN-07-5682
    Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nat Cell Biol, 2009, 11(12): 1487–1495. doi: 10.1038/ncb1998
    Fu R, Lv W, Xu Y, et al. Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis[J]. Nat Commun, 2020, 11(1): 460. doi: 10.1038/s41467-019-14076-3
    Liu X, Li Q, Niu X, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232–244. doi: 10.7150/ijbs.16951
    Jia Y, Zhu Y, Qiu S, et al. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis[J]. Stem Cell Res Ther, 2019, 10(1): 12. doi: 10.1186/s13287-018-1115-7
    Zhou H, Li X, Wu R, et al. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling[J]. Cell Prolif, 2021, 54(5): e13026. doi: 10.1111/CPR.13026
    Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise[J]. Cell, 2010, 140(4): 460–476. doi: 10.1016/j.cell.2010.01.045
    Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease[J]. J Cell Biol, 2011, 193(4): 607–618. doi: 10.1083/jcb.201012094
    Poto R, Loffredo S, Palestra F, et al. Angiogenesis, lymphangiogenesis, and inflammation in chronic obstructive pulmonary disease (COPD): few certainties and many outstanding questions[J]. Cells, 2022, 11(10): 1720. doi: 10.3390/cells11101720
    Matilla L, Martín-Núñez E, Garaikoetxea M, et al. Characterization of the sex-specific pattern of angiogenesis and lymphangiogenesis in aortic stenosis[J]. Front Cardiovasc Med, 2022, 9: 971802. doi: 10.3389/fcvm.2022.971802
    Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration[J]. Nat Rev Cardiol, 2021, 18(5): 368–379. doi: 10.1038/s41569-020-00489-x
    Biswas L, Chen J, De Angelis J, et al. Lymphatic vessels in bone support regeneration after injury[J]. Cell, 2023, 186(2): 382–397.e24. doi: 10.1016/j.cell.2022.12.031
    Kim H, Kataru RP, Koh GY. Inflammation-associated lymphangiogenesis: a double-edged sword?[J]. J Clin Invest, 2014, 124(3): 936–942. doi: 10.1172/JCI71607
    Ogata F, Fujiu K, Matsumoto S, et al. Excess lymphangiogenesis cooperatively induced by macrophages and CD4+ T cells drives the pathogenesis of lymphedema[J]. J Invest Dermatol, 2016, 136(3): 706–714. doi: 10.1016/j.jid.2015.12.001
    Shi J, Liang Q, Zuscik M, et al. Distribution and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice[J]. Arthritis Rheumatol, 2014, 66(3): 657–666. doi: 10.1002/art.38278
    Shen X, Zhu W, Zhang P, et al. Macrophage miR-149–5p induction is a key driver and therapeutic target for BRONJ[J]. JCI Insight, 2022, 7(16): e159865. doi: 10.1172/jci.insight.159865
    Wang H, Chen Y, Li W, et al. Effect of VEGFC on lymph flow and inflammation-induced alveolar bone loss[J]. J Pathol, 2020, 251(3): 323–335. doi: 10.1002/path.5456
    Murakami J, Ishii M, Suehiro F, et al. Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway[J]. Biochem Biophys Res Commun, 2017, 484(3): 710–718. doi: 10.1016/j.bbrc.2017.02.001
    Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123: 14–21. doi: 10.1016/j.semcdb.2021.05.014
    Breslin JW, Yang Y, Scallan JP, et al. Lymphatic vessel network structure and physiology[J]. Compr Physiol, 2018, 9(1): 207–299. doi: 10.1002/cphy.c180015
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (102) PDF downloads(13) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint