• ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 3
May  2023
Turn off MathJax
Article Contents
Zheyue Wang, Qi Tang, Bende Liu, Wenqing Zhang, Yufeng Chen, Ningfei Ji, Yan Peng, Xiaohui Yang, Daixun Cui, Weiyu Kong, Xiaojun Tang, Tingting Yang, Mingshun Zhang, Xinxia Chang, Jin Zhu, Mao Huang, Zhenqing Feng. A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling[J]. The Journal of Biomedical Research, 2023, 37(3): 166-178. doi: 10.7555/JBR.36.20220221
Citation: Zheyue Wang, Qi Tang, Bende Liu, Wenqing Zhang, Yufeng Chen, Ningfei Ji, Yan Peng, Xiaohui Yang, Daixun Cui, Weiyu Kong, Xiaojun Tang, Tingting Yang, Mingshun Zhang, Xinxia Chang, Jin Zhu, Mao Huang, Zhenqing Feng. A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling[J]. The Journal of Biomedical Research, 2023, 37(3): 166-178. doi: 10.7555/JBR.36.20220221

A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling

doi: 10.7555/JBR.36.20220221
More Information
  • Corresponding author: Jin Zhu, Huadong Medical Institute of Biotechniques, 293 Zhongshan Road, Nanjing, Jiangsu 210028, China. Tel: +86-25-84514223, E-mail: zhujin1968@njmu.edu.cn; Mao Huang, Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel: +86-25-83718836, E-mail: hm6114@163.com; Zhenqing Feng, National Health Commission Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Pathology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869411, E-mail: fengzhenqing@njmu.edu.cn
  • Received: 2022-10-05
  • Revised: 2022-12-06
  • Accepted: 2022-12-09
  • Published: 2022-12-12
  • Issue Date: 2023-05-28
  • Although vaccines have been developed, mutations of SARS-CoV-2, especially the dominant B.1.617.2 (delta) and B.1.529 (omicron) strains with more than 30 mutations on their spike protein, have caused a significant decline in prophylaxis, calling for the need for drug improvement. Antibodies are drugs preferentially used in infectious diseases and are easy to get from immunized organisms. The current study combined molecular modeling and single memory B cell sequencing to assess candidate sequences before experiments, providing a strategy for the fabrication of SARS-CoV-2 neutralizing antibodies. A total of 128 sequences were obtained after sequencing 196 memory B cells, and 42 sequences were left after merging extremely similar ones and discarding incomplete ones, followed by homology modeling of the antibody variable region. Thirteen candidate sequences were expressed, of which three were tested positive for receptor binding domain recognition but only one was confirmed as having broad neutralization against several SARS-CoV-2 variants. The current study successfully obtained a SARS-CoV-2 antibody with broad neutralizing abilities and provided a strategy for antibody development in emerging infectious diseases using single memory B cell BCR sequencing and computer assistance in antibody fabrication.

     

  • CLC number: R392, Document code: A
    The authors reported no conflict of interests.
    △These authors contributed equally to this work.
  • loading
  • [1]
    Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerg Microbes Infect, 2020, 9(1): 221–236. doi: 10.1080/22221751.2020.1719902
    [2]
    Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181(4): 894–904.e9. doi: 10.1016/j.cell.2020.03.045
    [3]
    He X, Hong W, Pan X, et al. SARS-CoV-2 Omicron variant: characteristics and prevention[J]. MedComm, 2021, 2(4): 838–845. doi: 10.1002/mco2.110
    [4]
    Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum[J]. Cell, 2021, 184(16): 4220–4236.e13. doi: 10.1016/j.cell.2021.06.020
    [5]
    Corti D, Purcell LA, Snell G, et al. Tackling COVID-19 with neutralizing monoclonal antibodies[J]. Cell, 2021, 184(12): 3086–3108. doi: 10.1016/j.cell.2021.05.005
    [6]
    Kuhn P, Fühner V, Unkauf T, et al. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display[J]. Proteomics Clin Appl, 2016, 10(9–10): 922–948. doi: 10.1002/prca.201600002
    [7]
    Guthmiller JJ, Dugan HL, Neu KE, et al. An efficient method to generate monoclonal antibodies from human B cells[J]. Methods Mol Biol, 2019, 1904: 109–145. https://pubmed.ncbi.nlm.nih.gov/30539468/
    [8]
    Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J]. Cell, 2020, 182(1): 73–84.e16. doi: 10.1016/j.cell.2020.05.025
    [9]
    Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2[J]. Nature, 2020, 584(7819): 120–124. doi: 10.1038/s41586-020-2381-y
    [10]
    Broughton HB. Molecular modeling[J]. Curr Opin Chem Biol, 1997, 1(3): 392–398. doi: 10.1016/S1367-5931(97)80079-8
    [11]
    Ferreira LG, Dos Santos RN, Oliva G, et al. Molecular docking and structure-based drug design strategies[J]. Molecules, 2015, 20(7): 13384–13421. doi: 10.3390/molecules200713384
    [12]
    Shan S, Luo S, Yang Z, et al. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization[J]. Proc Natl Acad Sci U S A, 2022, 119(11): e2122954119. doi: 10.1073/pnas.2122954119
    [13]
    Kong L, Ju B, Chen Y, et al. Key gp120 glycans pose roadblocks to the rapid development of VRC01-class antibodies in an HIV-1-infected Chinese donor[J]. Immunity, 2016, 44(4): 939–950. doi: 10.1016/j.immuni.2016.03.006
    [14]
    Zheng H, Chen Y, Li J, et al. Longitudinal analyses reveal distinct immune response landscapes in lung and intestinal tissues from SARS-CoV-2-infected rhesus macaques[J]. Cell Rep, 2022, 39(8): 110864. doi: 10.1016/j.celrep.2022.110864
    [15]
    Chen Q, Xian D, Xu W, et al. Affinity improvement of the fully human anti-TSLP recombinant antibody[J]. Mol Med Rep, 2019, 21(2): 759–767. doi: 10.3892/mmr.2019.10880
    [16]
    Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection[J]. Nature, 2020, 584(7819): 115–119. doi: 10.1038/s41586-020-2380-z
    [17]
    Zhang Q, Li R, Peng W, et al. Identification of the active constituents and significant pathways of Guizhi-Shaoyao-Zhimu decoction for the treatment of diabetes mellitus based on molecular docking and network pharmacology[J]. Comb Chem High Throughput Screen, 2019, 22(9): 584–598. https://pubmed.ncbi.nlm.nih.gov/31642770/
    [18]
    Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215–220. doi: 10.1038/s41586-020-2180-5
    [19]
    Yu K, Lieber MR. Current insights into the mechanism of mammalian immunoglobulin class switch recombination[J]. Crit Rev Biochem Mol Biol, 2019, 54(4): 333–351. doi: 10.1080/10409238.2019.1659227
    [20]
    Sun Y, Ho M. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic[J]. Antib Ther, 2020, 3(4): 246–256. doi: 10.1093/ABT/TBAA025
    [21]
    Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing[J]. Cell Discov, 2020, 6: 31. https://pubmed.ncbi.nlm.nih.gov/32377375/
    [22]
    Dugan HL, Stamper CT, Li L, et al. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets[J]. Immunity, 2021, 54(6): 1290–1303.e7. doi: 10.1016/j.immuni.2021.05.001
    [23]
    Copin R, Baum A, Wloga E, et al. The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies[J]. Cell, 2021, 184(15): 3949–3961.e11. doi: 10.1016/j.cell.2021.06.002
    [24]
    Gao C, Zhang M, Chen L. The comparison of two single-cell sequencing platforms: BD rhapsody and 10x genomics chromium[J]. Curr Genomics, 2020, 21(8): 602–609. doi: 10.2174/1389202921999200625220812
    [25]
    Guo Y, Chen K, Kwong PD, et al. cAb-Rep: a database of curated antibody repertoires for exploring antibody diversity and predicting antibody prevalence[J]. Front Immunol, 2019, 10: 2365. doi: 10.3389/fimmu.2019.02365
    [26]
    Collins AM, Watson CT. Immunoglobulin light chain gene rearrangements, receptor editing and the development of a self-tolerant antibody repertoire[J]. Front Immunol, 2018, 9: 2249. doi: 10.3389/fimmu.2018.02249
    [27]
    Jackson KJL, Wang Y, Gaeta BA, et al. Divergent human populations show extensive shared IGK rearrangements in peripheral blood B cells[J]. Immunogenetics, 2012, 64(1): 3–14. doi: 10.1007/s00251-011-0559-z
    [28]
    Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2[J]. Nature, 2021, 591(7851): 639–644. doi: 10.1038/s41586-021-03207-w
    [29]
    Teraguchi S, Saputri DS, Llamas-Covarrubias MA, et al. Methods for sequence and structural analysis of B and T cell receptor repertoires[J]. Comput Struct Biotechnol J, 2020, 18: 2000–2011. doi: 10.1016/j.csbj.2020.07.008
    [30]
    Singh A, Dauzhenka T, Kundrotas PJ, et al. Application of docking methodologies to modeled proteins[J]. Proteins, 2020, 88(9): 1180–1188. doi: 10.1002/prot.25889
    [31]
    Long X, Jeliazkov JR, Gray JJ. Non-H3 CDR template selection in antibody modeling through machine learning[J]. PEERJ, 2019, 7: e6179. doi: 10.7717/peerj.6179
    [32]
    Vakser IA. Protein-protein docking: from interaction to interactome[J]. Biophys J, 2014, 107(8): 1785–1793. doi: 10.1016/j.bpj.2014.08.033
    [33]
    Ambrosetti F, Jiménez-García B, Roel-Touris J, et al. Modeling antibody-antigen complexes by information-driven docking[J]. Structure, 2020, 28(1): 119–129.e2. doi: 10.1016/j.str.2019.10.011
    [34]
    Sankar K, Hoi KH, Hötzel I. Dynamics of heavy chain junctional length biases in antibody repertoires[J]. Commun Biol, 2020, 3(1): 207. doi: 10.1038/s42003-020-0931-3
    [35]
    Venet S, Ravn U, Buatois V, et al. Transferring the characteristics of naturally occurring and biased antibody repertoires to human antibody libraries by trapping CDRH3 sequences[J]. PLoS One, 2012, 7(8): e43471. doi: 10.1371/journal.pone.0043471
    [36]
    Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B. 1.1. 7 lineage - United States, December 29, 2020-January 12, 2021[J]. MMWR Morb Mortal Wkly Rep, 2021, 70(3): 95–99. doi: 10.15585/mmwr.mm7003e2
    [37]
    Wibmer CK, Ayres F, Hermanus T, et al. SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma[J]. Nat Med, 2021, 27(4): 622–625. doi: 10.1038/s41591-021-01285-x
    [38]
    Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P. 1 SARS-CoV-2 lineage in Manaus, Brazil[J]. Science, 2021, 372(6544): 815–821. doi: 10.1126/science.abh2644
    [39]
    Jhun H, Park HY, Hisham Y, et al. SARS-CoV-2 Delta (B. 1.617. 2) variant: a unique T478K mutation in receptor binding motif (RBM) of spike gene[J]. Immune Netw, 2021, 21(5): e32. doi: 10.4110/in.2021.21.e32
    [40]
    Chen J, Wei G. Omicron BA. 2 (B. 1.1. 529.2): high potential to becoming the next dominating variant[J]. Res Sq, 2022, doi: 10.21203/rs.3.rs-1362445/v1.
    [41]
    Beeraka NM, Sukocheva OA, Lukina E, et al. Development of antibody resistance in emerging mutant strains of SARS CoV-2: impediment for COVID-19 vaccines[J]. Rev Med Virol, 2022, 32(5): e2346. doi: 10.1002/RMV.2346
  • JBR-2022-0221-supplementary.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (225) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return