Citation: | Xi Yan, Junkui Shang, Runrun Wang, Fengyu Wang, Jiewen Zhang. Mechanisms regulating cerebral hypoperfusion in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. The Journal of Biomedical Research, 2022, 36(5): 353-357. doi: 10.7555/JBR.36.20220208 |
[1] |
Di Donato I, Bianchi S, De Stefano N, et al. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects[J]. BMC Med, 2017, 15(1): 41. doi: 10.1186/s12916-017-0778-8
|
[2] |
Schoemaker D, Quiroz YT, Torrico-Teave H, et al. Clinical and research applications of magnetic resonance imaging in the study of CADASIL[J]. Neurosci Lett, 2019, 698: 173–179. doi: 10.1016/j.neulet.2019.01.014
|
[3] |
Huneau C, Houot M, Joutel A, et al. Altered dynamics of neurovascular coupling in CADASIL[J]. Ann Clin Transl Neurol, 2018, 5(7): 788–802. doi: 10.1002/acn3.574
|
[4] |
Joutel A, Monet-Leprêtre M, Gosele C, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease[J]. J Clin Invest, 2010, 120(2): 433–445. doi: 10.1172/JCI39733
|
[5] |
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders[J]. Development, 2017, 144(10): 1743–1763. doi: 10.1242/dev.148007
|
[6] |
Liu H, Zhang W, Kennard S, et al. Notch3 is critical for proper angiogenesis and mural cell investment[J]. Circ Res, 2010, 107(7): 860–870. doi: 10.1161/CIRCRESAHA.110.218271
|
[7] |
Monet-Leprêtre M, Haddad I, Baron-Menguy C, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3ECD: a new pathomechanism in CADASIL[J]. Brain, 2013, 136(6): 1830–1845. doi: 10.1093/brain/awt092
|
[8] |
Zellner A, Scharrer E, Arzberger T, et al. CADASIL brain vessels show a HTRA1 loss-of-function profile[J]. Acta Neuropathol, 2018, 136(1): 111–125. doi: 10.1007/s00401-018-1853-8
|
[9] |
Fan D, Kassiri Z. Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology[J]. Front Physiol, 2020, 11: 661. doi: 10.3389/fphys.2020.00661
|
[10] |
Capone C, Cognat E, Ghezali L, et al. Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice[J]. Ann Neurol, 2016, 79(3): 387–403. doi: 10.1002/ana.24573
|
[11] |
Capone C, Dabertrand F, Baron-Menguy C, et al. Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics[J]. Elife, 2016, 5: e17536. doi: 10.7554/eLife.17536
|
[12] |
Hanemaaijer ES, Panahi M, Swaddiwudhipong N, et al. Autophagy-lysosomal defect in human CADASIL vascular smooth muscle cells[J]. Eur J Cell Biol, 2018, 97(8): 557–567. doi: 10.1016/j.ejcb.2018.10.001
|
[13] |
Neves KB, Morris HE, Alves-Lopes R, et al. Peripheral arteriopathy caused by Notch3 gain-of-function mutation involves ER and oxidative stress and blunting of NO/sGC/cGMP pathway[J]. Clin Sci (Lond), 2021, 135(6): 753–773. doi: 10.1042/CS20201412
|
[14] |
Henshall TL, Keller A, He L, et al. Notch3 is necessary for blood vessel integrity in the central nervous system[J]. Arterioscler Thromb Vasc Biol, 2015, 35(2): 409–420. doi: 10.1161/ATVBAHA.114.304849
|
[15] |
Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, et al. Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL[J]. J Exp Med, 2017, 214(8): 2271–2282. doi: 10.1084/jem.20161715
|
[16] |
Monet-Leprêtre M, Bardot B, Lemaire B, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain[J]. Brain, 2009, 132(6): 1601–1612. doi: 10.1093/brain/awp049
|
[17] |
Monet M, Domenga V, Lemaire B, et al. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo[J]. Hum Mol Genet, 2007, 16(8): 982–992. doi: 10.1093/hmg/ddm042
|
[18] |
Baron-Menguy C, Domenga-Denier V, Ghezali L, et al. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries[J]. Hypertension, 2017, 69(1): 60–70. doi: 10.1161/HYPERTENSIONAHA.116.08015
|
[19] |
Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nat Rev Neurosci, 2017, 18(7): 419–434. doi: 10.1038/nrn.2017.48
|
[20] |
Brennan-Krohn T, Salloway S, Correia S, et al. Glial vascular degeneration in CADASIL[J]. J Alzheimers Dis, 2010, 21(4): 1393–1402. doi: 10.3233/JAD-2010-100036
|
[21] |
Hase Y, Chen A, Bates LL, et al. Severe white matter astrocytopathy in CADASIL[J]. Brain Pathol, 2018, 28(6): 832–843. doi: 10.1111/bpa.12621
|
[22] |
Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions[J]. Nature, 2004, 431(7005): 195–199. doi: 10.1038/nature02827
|
[23] |
Takano T, Tian G, Peng W, et al. Astrocyte-mediated control of cerebral blood flow[J]. Nat Neurosci, 2006, 9(2): 260–267. doi: 10.1038/nn1623
|
[24] |
Jessen NA, Munk AS, Lundgaard I, et al. The glymphatic system: a beginner's guide[J]. Neurochem Res, 2015, 40(12): 2583–2599. doi: 10.1007/s11064-015-1581-6
|
[25] |
Benveniste H, Nedergaard M. Cerebral small vessel disease: a glymphopathy?[J]. Curr Opin Neurobiol, 2022, 72: 15–21. doi: 10.1016/j.conb.2021.07.006
|
[26] |
Koundal S, Elkin R, Nadeem S, et al. Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system[J]. Sci Rep, 2020, 10(1): 1990. doi: 10.1038/s41598-020-59045-9
|
[27] |
Jiang Q, Zhang L, Ding G, et al. Impairment of the glymphatic system after diabetes[J]. J Cereb Blood Flow Metab, 2017, 37(4): 1326–1337. doi: 10.1177/0271678X16654702
|