• ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 3
May  2023
Turn off MathJax
Article Contents
Gelena Kakurina, Marina Stakheeva, Elena Sereda, Evgenia Sidenko, Olga Cheremisina, Evgeny Choinzonov, Irina Kondakova. A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients[J]. The Journal of Biomedical Research, 2023, 37(3): 213-224. doi: 10.7555/JBR.36.20220182
Citation: Gelena Kakurina, Marina Stakheeva, Elena Sereda, Evgenia Sidenko, Olga Cheremisina, Evgeny Choinzonov, Irina Kondakova. A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients[J]. The Journal of Biomedical Research, 2023, 37(3): 213-224. doi: 10.7555/JBR.36.20220182

A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients

doi: 10.7555/JBR.36.20220182
More Information
  • Corresponding author: Gelena Kakurina, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634009, Russia. Tel/Fax: +7-3822-51-33-06/+7-3822-51-33-06, E-mail: kakurinagv@oncology.tomsk.ru/kakurina.gv@ssmu.ru
  • Received: 2022-04-15
  • Revised: 2022-08-17
  • Accepted: 2022-08-30
  • Published: 2022-11-10
  • Issue Date: 2023-05-28
  • Circulating tumor cells (CTCs) play an important role in tumor metastases, which is positively correlated with an increased risk of death. Actin-binding proteins, including cofilin (CFL1), profilin 1 (PFN1), and adenylate cyclase-associated protein 1 (CAP1), are thought to be involved in tumor cell motility and metastasis, specifically in head and neck squamous cell carcinoma (HNSCC). However, currently, there are no published studies on CFL1, PFN1, and CAP1 in CTCs and leukocytes in HNSCC patients. We assessed serum levels of CFL1, PFN1, and CAP1 and the number of CTCs and leukocytes containing these proteins in blood from 31 HNSCC patients (T1–4N0–2M0). The analysis used flow cytometry and an enzyme-linked immunosorbent assay kit. We found that CAP1+ CTCs and CAP1+ leukocyte subpopulations were prevalent in these HNSCC patient samples, while the prevalence rates of CFL1+ and PFN1+ CTCs were relatively low. Patients with stage T2–4N1–2M0 had CFL1+ and PFN1+ CTCs with an elevated PFN1 serum level, compared with the T1–3N0M0 group. In summary, the PFN1 serum level and the relative number of PFN1+CD326+ CTCs could be valuable prognostic markers for HNSCC metastases. The current study is the first to obtain data regarding the contents of actin-binding proteins (ABPs) in CTCs, and leukocytes in blood from HNSCC patients. This is also the first to assess the relationship between the number of CTCs subgroups and disease characteristics.


  • CLC number: R739.91, Document code: A
    The authors reported no conflict of interests.
    ΔThese authors contributed equally to this work.
  • loading
  • [1]
    Sulaiman A, Yao Z, Wang L. Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression[J]. J Biomed Res, 2018, 32(2): 81–90. doi: 10.7555/JBR.31.20160124
    Zhang Z, Xie H, Zuo W, et al. Lysine 2-hydroxyisobutyrylation proteomics reveals protein modification alteration in the actin cytoskeleton pathway of oral squamous cell carcinoma[J]. J Proteomics, 2021, 249: 104371. doi: 10.1016/j.jprot.2021.104371
    Kondakova IV, Iunusova NV, Spirina LV, et al. Association of intracellular proteinase activities with the content of locomotor proteins in tissues of primary tumors and metastasis in ovarian cancer[J]. Bioorg Khim (in Russian), 2014, 40(6): 735–742. doi: 10.1134/s1068162014060089
    Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness[J]. Biophys Rev, 2018, 10(5): 1323–1335. doi: 10.1007/s12551-018-0445-0
    Purde V, Busch F, Kudryashova E, et al. Oligomerization affects the ability of human cyclase-associated proteins 1 and 2 to promote actin severing by cofilins[J]. Int J Mol Sci, 2019, 20(22): 5647. doi: 10.3390/ijms20225647
    Bertling E, Quintero-Monzon O, Mattila PK, et al. Mechanism and biological role of profilin-Srv2/CAP interaction[J]. J Cell Sci, 2007, 120(Pt 7): 1225–1234, doi: 10.1242/jcs.000158.
    Shishkin S, Eremina L, Pashintseva N, et al. Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells[J]. Int J Mol Sci, 2016, 18(1): 10. doi: 10.3390/ijms18010010
    Nishita M, Aizawa H, Mizuno K. Stromal cell-derived factor 1α activates LIM kinase 1 and induces cofilin phosphorylation for T-cell chemotaxis[J]. Mol Cell Biol, 2002, 22(3): 774–783. doi: 10.1128/MCB.22.3.774-783.2002
    Zeng J, Li X, Liang L, et al. Phosphorylation of CAP1 regulates lung cancer proliferation, migration, and invasion[J]. J Cancer Res Clin Oncol, 2022, 148(1): 137–153. doi: 10.1007/s00432-021-03819-9
    Kakurina GV, Cheremisina OV, Sereda EE, et al. Serum levels of cytoskeleton remodeling proteins and their mRNA expression in tumor tissue of metastatic laryngeal and hypopharyngeal cancers[J]. Mol Biol Rep, 2021, 48(6): 5135–5142. doi: 10.1007/s11033-021-06510-x
    Zhang X, Pizzoni A, Hong K, et al. CAP1 binds and activates adenylyl cyclase in mammalian cells[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2024576118. doi: 10.1073/pnas.2024576118
    Kakurina GV, Kondakova IV, Spirina LV, et al. Expression of genes encoding cell motility proteins during progression of head and neck squamous cell carcinoma[J]. Bull Exp Biol Med, 2018, 166(2): 250–252. doi: 10.1007/s10517-018-4325-1
    Jang HD, Lee SE, Yang J, et al. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9[J]. Eur Heart J, 2020, 41(2): 239–252. doi: 10.1093/eurheartj/ehz566
    Kakurina GV, Kolegova ЕS, Shashova ЕЕ, et al. Association of mRNA expression levels of LRP1 and actin-binding proteins with the development of laryngeal and laryngopharyngeal squamous cell carcinoma[J]. Bull Exp Biol Med, 2020, 169(6): 802–805. doi: 10.1007/s10517-020-04983-7
    Kolegova ES, Kakurina GV, Kondakova IV, et al. Adenylate cyclase-associated protein 1 and cofilin in progression of non-small cell lung cancer[J]. Bull Exp Biol Med, 2019, 167(3): 393–395. doi: 10.1007/s10517-019-04534-9
    Beckley SJ, Hunter MC, Kituyi SN, et al. STIP1/HOP regulates the actin cytoskeleton through interactions with actin and changes in actin-binding proteins cofilin and profilin[J]. Int J Mol Sci, 2020, 21(9): 3152. doi: 10.3390/ijms21093152
    Ding Z, Joy M, Bhargava R, et al. Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis[J]. Oncogene, 2014, 33(16): 2065–2074. doi: 10.1038/onc.2013.166
    Wang Y, Wang Y, Wan R, et al. Profilin 1 protein and its implications for cancers[J]. Oncology (Williston Park), 2021, 35(7): 402–409. doi: 10.46883/ONC.2021.3507.0402
    Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. doi: 10.1038/s41392-021-00817-8
    Millner LM, Linder MW, Valdes R Jr. Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes[J]. Ann Clin Lab Sci, 2013, 43(3): 295–304. https://pubmed.ncbi.nlm.nih.gov/23884225/
    Horimoto Y, Tokuda E, Murakami F, et al. Analysis of circulating tumour cell and the epithelial mesenchymal transition (EMT) status during eribulin-based treatment in 22 patients with metastatic breast cancer: a pilot study[J]. J Transl Med, 2018, 16(1): 287. doi: 10.1186/s12967-018-1663-8
    Gires O, Pan M, Schinke H, et al. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?[J]. Cancer Metastasis Rev, 2020, 39(3): 969–987. doi: 10.1007/s10555-020-09898-3
    Zhang H, Yu Z. Enrichment and detection of circulating tumor cells and its application in head and neck squamous cell carcinoma[J]. Chin J Otorhinolaryngol Head Neck Surgery, 2017, 52(2): 147–151. doi: 10.3760/cma.j.issn.1673-0860.2017.02.020
    Aramaki O, Chalermsarp N, Otsuki M, et al. Differential expression of co-signal molecules and migratory properties in four distinct subsets of migratory dendritic cells from the oral mucosa[J]. Biochem Biophys Res Commun, 2011, 413(3): 407–413. doi: 10.1016/j.bbrc.2011.08.099
    Bergqvist M, Elebro K, Sandsveden M, et al. Effects of tumor-specific CAP1 expression and body constitution on clinical outcomes in patients with early breast cancer[J]. Breast Cancer Res, 2020, 22(1): 67. doi: 10.1186/s13058-020-01307-5
    Roy NH, Burkhardt JK. The actin cytoskeleton: a mechanical intermediate for signal integration at the immunological synapse[J]. Front Cell Dev Biol, 2018, 6: 116. doi: 10.3389/fcell.2018.00116
    Wurzer H, Hoffmann C, Al Absi A, et al. Actin cytoskeleton straddling the immunological synapse between cytotoxic lymphocytes and cancer cells[J]. Cells, 2019, 8(5): 463. doi: 10.3390/cells8050463
    Zheng Y, Fang Y, Li S, et al. Detection of plasma cofilin protein for diagnosis of lung cancer[J]. J South Med Univ (in Chinese), 2013, 33(10): 1551–1553. https://pubmed.ncbi.nlm.nih.gov/24144768/
    Xu J, Huang Y, Zhao J, et al. Cofilin: a promising protein implicated in cancer metastasis and apoptosis[J]. Front Cell Dev Biol, 2021, 9: 599065. doi: 10.3389/fcell.2021.599065
    Bardelli A, Pantel K. Liquid biopsies, what we do not know (Yet)[J]. Cancer Cell, 2017, 31(2): 172–179. doi: 10.1016/j.ccell.2017.01.002
    Zhu X, Suo Y, Fu Y, et al. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells[J]. Light Sci Appl, 2021, 10(1): 110. doi: 10.1038/s41377-021-00542-5
    Schneider F, Duong TA, Metz I, et al. Mutual functional dependence of cyclase-associated protein 1 (CAP1) and cofilin1 in neuronal actin dynamics and growth cone function[J]. Prog Neurobiol, 2021, 202: 102050. doi: 10.1016/j.pneurobio.2021.102050
    Santi A, Caselli A, Ranaldi F, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth[J]. Biochim Biophys Acta, 2015, 1853(12): 3211–3223. doi: 10.1016/j.bbamcr.2015.09.013
    Perea Paizal J, Au SH, Bakal C. Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis[J]. Br J Cancer, 2021, 124(1): 58–65. doi: 10.1038/s41416-020-01176-x
    Aseervatham J. Cytoskeletal remodeling in cancer[J]. Biology (Basel), 2020, 9(11): 385. doi: 10.3390/biology9110385
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article views (302) PDF downloads(145) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint