Citation: | Jubiao Zhang, Yang Chen, Lihong Yan, Xin Zhang, Xiaoyan Zheng, Junxia Qi, Fen Yang, Juxue Li. EphA3 deficiency in the hypothalamus promotes high-fat diet-induced obesity in mice[J]. The Journal of Biomedical Research, 2023, 37(3): 179-193. doi: 10.7555/JBR.36.20220168 |
[1] |
Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants[J]. Lancet, 2011, 377(9765): 557–567. doi: 10.1016/S0140-6736(10)62037-5
|
[2] |
Dee A, Kearns K, O'Neill C, et al. The direct and indirect costs of both overweight and obesity: a systematic review[J]. BMC Res Notes, 2014, 7: 242. doi: 10.1186/1756-0500-7-242
|
[3] |
Dahiya DK, Renuka, Puniya M, et al. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review[J]. Front Microbiol, 2017, 8: 563. doi: 10.3389/fmicb.2017.00563
|
[4] |
Myers Jr MG, Olson DP. Central nervous system control of metabolism[J]. Nature, 2012, 491(7424): 357–363. doi: 10.1038/nature11705
|
[5] |
Rodriguez EM, Blázquez JL, Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid[J]. Peptides, 2010, 31(4): 757–776. doi: 10.1016/j.peptides.2010.01.003
|
[6] |
Ruan H, Dietrich MO, Liu Z, et al. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat[J]. Cell, 2014, 159(2): 306–317. doi: 10.1016/j.cell.2014.09.010
|
[7] |
Ilnytska O, Argyropoulos G. The role of the Agouti-Related Protein in energy balance regulation[J]. Cell Mol Life Sci, 2008, 65(17): 2721–2731. doi: 10.1007/s00018-008-8104-4
|
[8] |
Zhan C, Zhou J, Feng Q, et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively[J]. J Neurosci, 2013, 33(8): 3624–3632. doi: 10.1523/JNEUROSCI.2742-12.2013
|
[9] |
Konner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond[J]. Physiol Behav, 2009, 97(5): 632–638. doi: 10.1016/j.physbeh.2009.03.027
|
[10] |
Brown A, Yates PA, Burrola P, et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling[J]. Cell, 2000, 102(1): 77–88. doi: 10.1016/S0092-8674(00)00012-X
|
[11] |
Miao H, Nickel CH, Cantley LG, et al. EphA kinase activation regulates HGF-induced epithelial branching morphogenesis[J]. J Cell Biol, 2003, 162(7): 1281–1292. doi: 10.1083/jcb.200304018
|
[12] |
Kudo C, Ajioka I, Hirata Y, et al. Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain[J]. J Comp Neurol, 2005, 487(3): 255–269. doi: 10.1002/cne.20551
|
[13] |
Stephen LJ, Fawkes AL, Verhoeve A, et al. A critical role for the EphA3 receptor tyrosine kinase in heart development[J]. Dev Biol, 2007, 302(1): 66–79. doi: 10.1016/j.ydbio.2006.08.058
|
[14] |
Konstantinova I, Nikolova G, Ohara-Imaizumi M, et al. EphA-Ephrin-A-mediated β cell communication regulates insulin secretion from pancreatic islets[J]. Cell, 2007, 129(2): 359–370. doi: 10.1016/j.cell.2007.02.044
|
[15] |
Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell, 2014, 159(2): 440–455. doi: 10.1016/j.cell.2014.09.014
|
[16] |
Mellon PL, Windle JJ, Goldsmith PC, et al. Immortalization of hypothalamic GnRH by genetically targeted tumorigenesis[J]. Neuron, 1990, 5(1): 1–10. doi: 10.1016/0896-6273(90)90028-E
|
[17] |
Egawa M, Yoshimatsu H, Bray GA. Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats[J]. Am J Physiol, 1991, 260(2 Pt 2): R328–R334. https://pubmed.ncbi.nlm.nih.gov/1996720/
|
[18] |
Qiu J, Zhang CG, Borgquist A, et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels[J]. Cell Metab, 2014, 19(4): 682–693. doi: 10.1016/j.cmet.2014.03.004
|
[19] |
Wauman J, Tavernier J. Leptin receptor signaling: pathways to leptin resistance[J]. Front Biosci (Landmark Ed), 2011, 16(7): 2771–2793. https://pubmed.ncbi.nlm.nih.gov/21622208/
|
[20] |
Sinha MK, Ohannesian JP, Heiman ML, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects[J]. J Clin Invest, 1996, 97(5): 1344–1347. doi: 10.1172/JCI118551
|
[21] |
Licinio J, Negrão AB, Mantzoros C, et al. Sex differences in circulating human leptin pulse amplitude: clinical implications[J]. J Clin Endocrinol Metab, 1998, 83(11): 4140–4147. https://pubmed.ncbi.nlm.nih.gov/9814504/
|
[22] |
Saad MF, Riad-Gabriel MG, Khan A, et al. Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity[J]. J Clin Endocrinol Metab, 1998, 83(2): 453–459. https://pubmed.ncbi.nlm.nih.gov/9467557/
|
[23] |
Carmo JMD, Da Silva AA, Gava FN, et al. Impact of leptin deficiency compared with neuronal-specific leptin receptor deletion on cardiometabolic regulation[J]. Am J Physiol Regul Integr Comp Physiol, 2019, 317(4): R552–R562. doi: 10.1152/ajpregu.00077.2019
|
[24] |
Binns KL, Taylor PP, Sicheri F, et al. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors[J]. Mol Cell Biol, 2000, 20(13): 4791–4805. doi: 10.1128/MCB.20.13.4791-4805.2000
|
[25] |
Pitulescu ME, Adams RH. Eph/ephrin molecules-a hub for signaling and endocytosis[J]. Genes Dev, 2010, 24(22): 2480–2492. doi: 10.1101/gad.1973910
|
[26] |
Chiari R, Hames G, Stroobant V, et al. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class Ⅱ molecules[J]. Cancer Res, 2000, 60(17): 4855–4863. https://pubmed.ncbi.nlm.nih.gov/10987298/
|
[27] |
Valsesia A, Rimoldi D, Martinet D, et al. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma[J]. PLoS One, 2011, 6(4): e18369. doi: 10.1371/journal.pone.0018369
|
[28] |
Breitfeld J, Kehr S, Müller L, et al. Developmentally driven changes in adipogenesis in different fat depots are related to obesity[J]. Front Endocrinol, 2020, 11: 138. doi: 10.3389/fendo.2020.00138
|
[29] |
Krashes MJ, Koda S, Ye CP, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice[J]. J Clin Invest, 2011, 121(4): 1424–1428. doi: 10.1172/JCI46229
|
[30] |
Gropp E, Shanabrough M, Borok E, et al. Agouti-related peptide-expressing neurons are mandatory for feeding[J]. Nat Neurosci, 2005, 8(10): 1289–1291. doi: 10.1038/nn1548
|