• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Minghao Yuan, Yangyang Wang, Zhenting Huang, Feng Jing, Peifeng Qiao, Qian Zou, Jing Li, Zhiyou Cai. Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220145
Citation: Minghao Yuan, Yangyang Wang, Zhenting Huang, Feng Jing, Peifeng Qiao, Qian Zou, Jing Li, Zhiyou Cai. Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220145

Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research

doi: 10.7555/JBR.36.20220145
More Information
  • Corresponding author: Zhiyou Cai, Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China; No.104, Pipashan Main Street, Yuzhong District, Chongqing, 400014, China; No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, China. Tel/Fax: +86-23-63515796, E-mail: caizhiyou@ucas.ac.cn
  • Received: 2022-06-15
  • Revised: 2022-07-18
  • Accepted: 2022-08-04
  • Published: 2022-09-28
  • Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. The major pathological changes in AD progression are the generation and accumulation of amyloid-beta (Aβ) peptides, and the presence of abnormally hyperphosphorylated tau proteins in the brain. Autophagy is a conserved degradation pathway that eliminates abnormal protein aggregates and damaged organelles. Previous studies have suggested that autophagy plays a key role in the production and clearance of Aβ peptides. to maintain a steady-state of Aβ peptides levels. However, a growing body of evidence suggests that autophagy is significantly impaired in the pathogenesis of AD, especially in Aβ metabolisation. Therefore, this article reviews the latest studies concerning the mechanisms of autophagy, the metabolisation of Aβ peptides, and the defective autophagy in the production and clearance of Aβ peptides. Here, we also summarize established and new strategies for targeting autophagy in vivo and through clinical AD trials in order to identify gaps in our knowledge and to generate further questions.

     

  • CLC number: R749.16, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies[J]. Cell, 2012, 148(6): 1204–1222. doi: 10.1016/j.cell.2012.02.040
    [2]
    Peters C, Bascuñán D, Burgos CF, et al. Characterization of a new molecule capable of inhibiting several steps of the amyloid cascade in Alzheimer's disease[J]. Neurobiol Dis, 2020, 141: 104938. doi: 10.1016/j.nbd.2020.104938
    [3]
    Rai SN, Singh C, Singh A, et al. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer's disease[J]. Mol Neurobiol, 2020, 57(7): 3075–3088. doi: 10.1007/s12035-020-01945-y
    [4]
    Alzheimer's Disease Intermational. World alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends[R]. London: Alzheimer's Disease Intermational, 2015.
    [5]
    Ingelsson M, Fukumoto H, Newell KL, et al. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain[J]. Neurology, 2004, 62(6): 925–931. doi: 10.1212/01.WNL.0000115115.98960.37
    [6]
    LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer's disease[J]. Nat Rev Neurosci, 2007, 8(7): 499–509. doi: 10.1038/nrn2168
    [7]
    Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer's disease: implications for mitochondrially targeted antioxidant therapeutics[J]. J Biomed Biotechnol, 2006, 2006: 31372. doi: 10.1155/JBB/2006/31372
    [8]
    Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics[J]. Biochim Biophys Acta Mol Basis Dis, 2012, 1822(5): 639–649. doi: 10.1016/j.bbadis.2011.10.011
    [9]
    Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders[J]. Antioxid Redox Signaling, 2010, 13(11): 1763–1811. doi: 10.1089/ars.2009.3074
    [10]
    Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis[J]. BioFactors, 2009, 35(2): 146–160. doi: 10.1002/biof.22
    [11]
    Calabrese EJ, Iavicoli I, Calabrese V. Hormesis: why it is important to biogerontologists[J]. Biogerontology, 2012, 13(3): 215–235. doi: 10.1007/s10522-012-9374-7
    [12]
    Zhang Y, Ahn YH, Benjamin I, et al. HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway[J]. Chem Biol, 2011, 18(11): 1355–1361. doi: 10.1016/j.chembiol.2011.09.008
    [13]
    Drake J, Sultana R, Aksenova M, et al. Elevation of mitochondrial glutathione by γ-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress[J]. J Neurosci Res, 2003, 74(6): 917–927. doi: 10.1002/jnr.10810
    [14]
    Mancuso C, Pani G, Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species[J]. Redox Rep, 2006, 11(5): 207–213. doi: 10.1179/135100006X154978
    [15]
    Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease[J]. Alzheimer's Dement, 2012, 8(1): 1–13. doi: 10.1016/j.jalz.2011.10.007
    [16]
    Reiss AB, Arain HA, Stecker MM, et al. Amyloid toxicity in Alzheimer's disease[J]. Rev Neurosci, 2018, 29(6): 613–627. doi: 10.1515/revneuro-2017-0063
    [17]
    Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001, 81(2): 741–766. doi: 10.1152/physrev.2001.81.2.741
    [18]
    Wei Y, Zhou J, Wu J, et al. ERβ promotes Aβ degradation via the modulation of autophagy[J]. Cell Death Dis, 2019, 10(8): 565. doi: 10.1038/s41419-019-1786-8
    [19]
    Zhang W, Xu C, Sun J, et al. Impairment of the autophagy-lysosomal pathway in Alzheimer's diseases: pathogenic mechanisms and therapeutic potential[J]. Acta Pharm Sin B, 2022, 12(3): 1019–1040. doi: 10.1016/j.apsb.2022.01.008
    [20]
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms[J]. J Pathol, 2010, 221(1): 3–12. doi: 10.1002/path.2697
    [21]
    Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)[J]. Autophagy, 2021, 17(1): 1–382. doi: 10.1080/15548627.2020.1797280
    [22]
    Savini M, Folick A, Lee YT, et al. Lysosome lipid signalling from the periphery to neurons regulates longevity[J]. Nat Cell Biol, 2022, 24(6): 906–916. doi: 10.1038/s41556-022-00926-8
    [23]
    Reddy PH, Oliver DM. Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in alzheimer's disease[J]. Cells, 2019, 8(5): 488. doi: 10.3390/cells8050488
    [24]
    Eiyama A, Kondo-Okamoto N, Okamoto K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast[J]. FEBS Lett, 2013, 587(12): 1787–1792. doi: 10.1016/j.febslet.2013.04.030
    [25]
    Lipinski MM. Towards the global understanding of the autophagy regulatory network[J]. Autophagy, 2010, 6(8): 1218–1220. doi: 10.4161/auto.6.8.13772
    [26]
    Ling DJ, Salvaterra PM. A central role for autophagy in Alzheimer-type neurodegeneration[J]. Autophagy, 2009, 5(5): 738–740. doi: 10.4161/auto.5.5.8626
    [27]
    Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer's disease Aβ peptide[J]. BioEssays, 2014, 36(6): 570–578. doi: 10.1002/bies.201400002
    [28]
    Ohta K, Mizuno A, Ueda M, et al. Autophagy impairment stimulates PS1 expression and γ-secretase activity[J]. Autophagy, 2010, 6(3): 345–352. doi: 10.4161/auto.6.3.11228
    [29]
    Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis[J]. J Cell Physiol, 2019, 234(6): 8094–8112. doi: 10.1002/jcp.27588
    [30]
    Hung COY, Livesey FJ. Altered γ-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer's disease[J]. Cell Rep, 2018, 25(13): 3647–3660.e2. doi: 10.1016/j.celrep.2018.11.095
    [31]
    Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease[J]. FASEB J, 2017, 31(7): 2729–2743. doi: 10.1096/fj.201700359
    [32]
    Kiššová IB, Salin B, Schaeffer J, et al. Selective and non-selective autophagic degradation of mitochondria in yeast[J]. Autophagy, 2007, 3(4): 329–336. doi: 10.4161/auto.4034
    [33]
    Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]. Mol Cell Biol, 2000, 20(15): 5454–5468. doi: 10.1128/MCB.20.15.5454-5468.2000
    [34]
    Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy[J]. Trends Cell Biol, 2016, 26(1): 6–16. doi: 10.1016/j.tcb.2015.08.010
    [35]
    Zaffagnini G, Martens S. Mechanisms of selective autophagy[J]. J Mol Biol, 2016, 428(9): 1714–1724. doi: 10.1016/j.jmb.2016.02.004
    [36]
    Denton D, Xu T, Kumar S. Autophagy as a pro-death pathway[J]. Immunol Cell Biol, 2015, 93(1): 35–42. doi: 10.1038/icb.2014.85
    [37]
    Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular model systems[J]. Trends Cell Biol, 2015, 25(7): 376–387. doi: 10.1016/j.tcb.2015.03.001
    [38]
    Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40(2): 280–293. doi: 10.1016/j.molcel.2010.09.023
    [39]
    Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work?[J]. Annu Rev Biochem, 2016, 85: 685–713. doi: 10.1146/annurev-biochem-060815-014556
    [40]
    Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811–1836. doi: 10.15252/embj.201796697
    [41]
    Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207–215. doi: 10.1080/15548627.2017.1378838
    [42]
    Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex[J]. Nat Rev Mol Cell Biol, 2013, 14(12): 759–774. doi: 10.1038/nrm3696
    [43]
    Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy[J]. Curr Opin Cell Biol, 2016, 39: 61–68. doi: 10.1016/j.ceb.2016.02.010
    [44]
    O'Keefe L, Denton D. Using Drosophila models of amyloid toxicity to study autophagy in the pathogenesis of Alzheimer's disease[J]. BioMed Res Int, 2018, 2018: 5195416. doi: 10.1155/2018/5195416
    [45]
    Antonioli M, Di Rienzo M, Piacentini M, et al. Emerging mechanisms in initiating and terminating autophagy[J]. Trends Biochem Sci, 2017, 42(1): 28–41. doi: 10.1016/j.tibs.2016.09.008
    [46]
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728–741. doi: 10.1016/j.cell.2011.10.026
    [47]
    Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy[J]. Essays Biochem, 2013, 55: 39–50. doi: 10.1042/bse0550039
    [48]
    Perera RM, Zoncu R. The lysosome as a regulatory hub[J]. Annu Rev Cell Dev Biol, 2016, 32: 223–253. doi: 10.1146/annurev-cellbio-111315-125125
    [49]
    Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]. Cell, 2012, 151(6): 1256–1269. doi: 10.1016/j.cell.2012.11.001
    [50]
    Fader C, Sánchez D, Furlán M, et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells[J]. Traffic, 2008, 9(2): 230–250. doi: 10.1111/j.1600-0854.2007.00677.x
    [51]
    Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: endosomal functions and beyond[J]. Semin Cell Dev Biol, 2018, 74: 21–28. doi: 10.1016/j.semcdb.2017.08.014
    [52]
    Mizushima N. Autophagy: process and function[J]. Genes Dev, 2007, 21(22): 2861–2873. doi: 10.1101/gad.1599207
    [53]
    Morel E, Chamoun Z, Lasiecka ZM, et al. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system[J]. Nat Commun, 2013, 4: 2250. doi: 10.1038/ncomms3250
    [54]
    Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease[J]. J Neurochem, 1995, 65(4): 1431–1444. doi: 10.1046/j.1471-4159.1995.65041431.x
    [55]
    Tang Y, Scott DA, Das U, et al. Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid β-protein oligomers[J]. Traffic, 2012, 13(5): 681–693. doi: 10.1111/j.1600-0854.2012.01340.x
    [56]
    Palmer BW, Ryan KA, Kim HM, et al. Neuropsychological correlates of capacity determinations in Alzheimer disease: implications for assessment[J]. Am J Geriatr Psychiatry, 2013, 21(4): 373–381. doi: 10.1016/j.jagp.2012.11.008
    [57]
    Dunys J, Valverde A, Checler F. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?[J]. J Biol Chem, 2018, 293(40): 15419–15428. doi: 10.1074/jbc.R118.003999
    [58]
    Grimm MOW, Mett J, Stahlmann CP, et al. Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer's disease[J]. Front Aging Neurosci, 2013, 5: 98. doi: 10.3389/fnagi.2013.00098s
    [59]
    Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease[J]. Front Aging Neurosci, 2014, 6: 93. doi: 10.1074/jbc.M801487200
    [60]
    Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners?[J]. Neuron, 2014, 81(4): 740–754. doi: 10.1016/j.neuron.2014.01.045
    [61]
    Wang Y, Zhou H, Zhou X. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives[J]. Drug Discov Today, 2006, 11(19–20): 931–938. doi: 10.1016/j.drudis.2006.08.004
    [62]
    Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181–1194. doi: 10.1007/s12035-014-9070-5
    [63]
    Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier[J]. J Clini Invest, 2000, 106(12): 1489–1499. doi: 10.1172/JCI10498
    [64]
    Xiang Y, Bu X, Liu Y, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer's disease[J]. Acta Neuropathol, 2015, 130(4): 487–499. doi: 10.1007/s00401-015-1477-1
    [65]
    Matsuzaki K, Kato K, Yanagisawa K. Ganglioside-mediated assembly of amyloid β-protein: roles in Alzheimer's disease[J]. Prog Mol Biol Transl Sci, 2018, 156: 413–434. doi: 10.1016/bs.pmbts.2017.10.005
    [66]
    Kanekiyo T, Liu C, Shinohara M, et al. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β[J]. J Neurosci, 2012, 32(46): 16458–16465. doi: 10.1523/JNEUROSCI.3987-12.2012
    [67]
    Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study[J]. J Neuropathol, 2005, 64(2): 113–122. doi: 10.1093/jnen/64.2.113
    [68]
    Faborode OS, Dalle E, Mabandla MV. Trauma-like exposure alters neuronal apoptosis, Bin1, Fkbp5 and NR2B expression in an amyloid-beta (1–42) rat model of Alzheimer's disease[J]. Neurobiol Learn Mem, 2022, 190: 107611. doi: 10.1016/j.nlm.2022.107611
    [69]
    Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148–160. doi: 10.1038/s41583-019-0132-6
    [70]
    Esselun C, Dieter F, Sus N, et al. Walnut oil reduces Aβ levels and increases neurite length in a cellular model of early Alzheimer disease[J]. Nutrients, 2022, 14(9): 1694. doi: 10.3390/nu14091694
    [71]
    Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance[J]. Exp Neurol, 2012, 236(1): 1–5. doi: 10.1016/j.expneurol.2012.04.021
    [72]
    Cai Z, Hussain MD, Yan L. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease[J]. Int J Neurosci, 2014, 124(5): 307–321. doi: 10.3109/00207454.2013.833510
    [73]
    Felsky D, Roostaei T, Nho K, et al. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain[J]. Nat Commun, 2019, 10(1): 409. doi: 10.1038/s41467-018-08279-3
    [74]
    Zhu M, Wang X, Schultzberg M, et al. Differential regulation of resolution in inflammation induced by amyloid-β42 and lipopolysaccharides in human microglia[J]. J Alzheimers Dis, 2015, 43(4): 1237–1250. doi: 10.3233/JAD-141233
    [75]
    D'Errico P, Ziegler-Waldkirch S, Aires V, et al. Microglia contribute to the propagation of Aβ into unaffected brain tissue[J]. Nat Neurosci, 2022, 25(1): 20–25. doi: 10.1038/s41593-021-00951-0
    [76]
    Pensalfini A, Kim S, Subbanna S, et al. Endosomal dysfunction induced by directly overactivating Rab5 recapitulates prodromal and neurodegenerative features of Alzheimer's disease[J]. Cell Rep, 2020, 33(8): 108420. doi: 10.1016/j.celrep.2020.108420
    [77]
    Lee JH, Yang D, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques[J]. Nat Neurosci, 2022, 25(6): 688–701. doi: 10.1038/s41593-022-01084-8
    [78]
    Fukumoto H, Rosene DL, Moss MB, et al. β-secretase activity increases with aging in human, monkey, and mouse brain[J]. Am J Pathol, 2004, 164(2): 719–725. doi: 10.1016/S0002-9440(10)63159-8
    [79]
    Vassar R, Kovacs DM, Yan RQ, et al. The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential[J]. J Neurosci, 2009, 29(41): 12787–12794. doi: 10.1523/JNEUROSCI.3657-09.2009
    [80]
    Willem M, Lammich S, Haass C. Function, regulation and therapeutic properties of β-secretase (BACE1)[J]. Semin Cell Dev Biol, 2009, 20(2): 175–182. doi: 10.1016/j.semcdb.2009.01.003
    [81]
    Evin G, Barakat A, Masters CL. BACE: therapeutic target and potential biomarker for Alzheimer's disease[J]. Int J Biochem Cell Biol, 2010, 42(12): 1923–1926. doi: 10.1016/j.biocel.2010.08.017
    [82]
    Huse JT, Pijak DS, Leslie GJ, et al. Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme: the Alzheimer's disease β-secretase[J]. J Biol Chem, 2000, 275(43): 33729–33737. doi: 10.1074/jbc.M004175200
    [83]
    Yang L, Lindholm K, Yan R, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease[J]. Nat Med, 2003, 9(1): 3–4. doi: 10.1038/nm0103-3
    [84]
    Kang EL, Biscaro B, Piazza F, et al. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus[J]. J Biol Chem, 2012, 287(51): 42867–42880. doi: 10.1074/jbc.M112.407072
    [85]
    Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy[J]. J Neurosci, 2011, 31(21): 7817–30. doi: 10.1523/JNEUROSCI.6412-10.2011
    [86]
    Maday S, Holzbaur E. Autophagosome assembly and cargo capture in the distal axon[J]. Autophagy, 2012, 8(5): 858–60. doi: 10.4161/auto.20055
    [87]
    Maday S, Holzbaur EF. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway[J]. Dev Cell, 2014, 30(1): 71–85. doi: 10.1016/j.devcel.2014.06.001
    [88]
    Cheng X, Zhou B, Lin M, et al. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes[J]. J Cell Biol, 2015, 209(3): 377–386. doi: 10.1083/jcb.201412046
    [89]
    Maday S, Holzbaur ELF. Compartment-specific regulation of autophagy in primary neurons[J]. J Neurosci, 2016, 36(22): 5933–5545. doi: 10.1523/JNEUROSCI.4401-15.2016
    [90]
    Feng T, Tammineni P, Agrawal C, et al. Autophagy-mediated Regulation of BACE1 protein trafficking and degradation[J]. J Biol Chem, 2017, 292(5): 1679–1690. doi: 10.1074/jbc.M116.766584
    [91]
    Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited[J]. Alzheimers Dement, 2016, 12(6): 733–748. doi: 10.1016/j.jalz.2016.01.012
    [92]
    Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: time for a clinical trial?[J]. Sci Transl Med, 2019, 11(476): eaar4289. doi: 10.1126/scitranslmed.aar4289
    [93]
    Talboom JS, Velazquez R, Oddo S. The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer's disease[J]. NPJ Aging Mech Dis, 2015, 1: 15008. doi: 10.1038/npjamd.2015.8
    [94]
    Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD[J]. J Neurochem, 2015, 133(5): 739–749. doi: 10.1111/jnc.13037
    [95]
    Tecalco-Cruz A, Pedraza-Chaverri J, Briones-Herrera A, et al. Protein degradation-associated mechanisms that are affected in Alzheimer´s disease[J]. Mol Cell Biochem, 2022, 477(3): 915–925. doi: 10.1007/s11010-021-04334-8
    [96]
    Wu H, Lu M, Wang W, et al. Lamotrigine reduces β-site AβPP-cleaving enzyme 1 protein levels through induction of autophagy[J]. J Alzheimer's Dis, 2015, 46(4): 863–76. doi: 10.3233/JAD-143162
    [97]
    Ordóñez-Gutiérrez L, Benito-Cuesta I, Abad JL, et al. Dihydroceramide desaturase 1 inhibitors reduce amyloid-β levels in primary neurons from an alzheimer's disease transgenic model[J]. Pharm Res, 2018, 35(3): 49. doi: 10.1007/s11095-017-2312-2
    [98]
    Cai Z, Zhou Y, Liu Z, et al. Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of γ-secretase complex[J]. Neuropsychiatr Dis Treat, 2015, 11: 2091–2099. doi: 10.2147/NDT.S84755
    [99]
    Caccamo A, Ferreira E, Branca C, et al. p62 improves AD-like pathology by increasing autophagy[J]. Mol Psychiatry, 2017, 22(6): 865–873. doi: 10.1038/mp.2016.139
    [100]
    Di Meco A, Li J, Blass BE, et al. 12/15-Lipoxygenase inhibition reverses cognitive impairment, brain amyloidosis, and tau pathology by stimulating autophagy in aged triple transgenic mice[J]. Biol Psychiatry, 2017, 81(2): 92–100. doi: 10.1016/j.biopsych.2016.05.023
    [101]
    Gali CC, Fanaee-Danesh E, Zandl-Lang M, et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice[J]. Mol Cell Neurosci, 2019, 99: 103390. doi: 10.1016/j.mcn.2019.103390
    [102]
    Lee JA, Gao F. Regulation of Aβ pathology by beclin 1: a protective role for autophagy?[J]. J Clin Invest, 2008, 118(6): 2015–2018. doi: 10.1172/JCI35662
    [103]
    Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice[J]. J Clin Invest, 2008, 118(6): 2190–2199. doi: 10.1172/JCI33585
    [104]
    Sasahara K, Morigaki K, Shinya K. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure[J]. Phys Chem Chem Phys, 2013, 15(23): 8929–8939. doi: 10.1039/c3cp44517h
    [105]
    Seo BR, Lee SJ, Cho KS, et al. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells[J]. Neurobiol Aging, 2015, 36(12): 3228–3238. doi: 10.1016/j.neurobiolaging.2015.09.006
    [106]
    Lafay-Chebassier C, Page G, Ingrand S, et al. P1-12 Modulation des voies mTOR, p70S6K et ERK du contrôle traductionnel par le peptide amyloïde Ab 1-42 dans des cellules de neuroblastomes humains[J]. Rev Neurol, 2005, 161(12): 88–89. doi: 10.1016/S0035-3787(05)85328-7
    [107]
    Nilsson P, Loganathan K, Sekiguchi M, et al. Aβ secretion and plaque formation depend on autophagy[J]. Cell Rep, 2013, 5(1): 61–69. doi: 10.1016/j.celrep.2013.08.042
    [108]
    Wang H, Zhang T, Kuerban B, et al. Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice[J]. Neurosci Bull, 2015, 31(4): 491–504. doi: 10.1007/s12264-015-1546-4
    [109]
    Xue Z, Guo Y, Fang Y. Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells[J]. Neurosci Lett, 2016, 618: 50–57. doi: 10.1016/j.neulet.2016.02.044
    [110]
    Wang B, Her G, Hu M, et al. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease[J]. Proc Natl Acad Sci USA, 2017, 114(15): E3129–E3138. doi: 10.1073/pnas.1618804114
    [111]
    Ramanathan A, Nelson AR, Sagare AP, et al. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1[J]. Front Aging Neurosci, 2015, 7: 136. doi: 10.3389/fnagi.2015.00136
    [112]
    Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance[J]. Nat Neurosci, 2015, 18(7): 978–987. doi: 10.1038/nn.4025
    [113]
    Chan Y, Chen W, Wan W, et al. Aβ1-42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd. 3 cells[J]. Exp Cell Res, 2018, 369(2): 266–274. doi: 10.1016/j.yexcr.2018.05.025
    [114]
    Farr SA, Roesler E, Niehoff ML, et al. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer's disease[J]. J Alzheimer's Dis, 2019, 68(4): 1699–1710. doi: 10.3233/JAD-181240
    [115]
    Luo R, Su L, Li G, et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model[J]. Autophagy, 2020, 16(1): 52–69. doi: 10.1080/15548627.2019.1596488
    [116]
    Ozcelik S, Fraser G, Castets P, et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice[J]. PLoS One, 2013, 8(5): e62459. doi: 10.1371/journal.pone.0062459
    [117]
    Song J, Malampati S, Zeng Y, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer's disease models[J]. Aging Cell, 2020, 19(2): e13069. doi: 10.1111/acel.13069
    [118]
    Zhang W, Wang J, Yang C. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease[J]. Autophagy, 2022, 18(7): 1740–1742. doi: 10.1080/15548627.2022.2046437
    [119]
    Yang C, Zhang W, Dong X, et al. A natural product solution to aging and aging-associated diseases[J]. Pharmacol Ther, 2020, 216: 107673. doi: 10.1016/j.pharmthera.2020.107673
    [120]
    Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice[J]. Brain Behav Immun, 2018, 69: 351–363. doi: 10.1016/j.bbi.2017.12.009
    [121]
    Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism[J]. J Biol Chem, 2010, 285(12): 9100–9113. doi: 10.1074/jbc.M109.060061
    [122]
    Drygalski K, Fereniec E, Koryciński K, et al. Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials[J]. Exp Gerontol, 2018, 113: 36–47. doi: 10.1016/j.exger.2018.09.019
    [123]
    Kong W, Vernieri C, Foiani M, et al. Berberine in the treatment of metabolism-related chronic diseases: a drug cloud (dCloud) effect to target multifactorial disorders[J]. Pharmacol Ther, 2020, 209: 107496. doi: 10.1016/j.pharmthera.2020.107496
    [124]
    Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes, 2006, 55(8): 2256–2264. doi: 10.2337/db06-0006
    [125]
    Huang M, Jiang X, Liang Y, et al. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease[J]. Exp Gerontol, 2017, 91: 25–33. doi: 10.1016/j.exger.2017.02.004
    [126]
    Li J, Kim S, Blenis J. Rapamycin: one drug, many effects[J]. Cell Metab, 2014, 19(3): 373–379. doi: 10.1016/j.cmet.2014.01.001
    [127]
    Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease[J]. PLoS One, 2010, 5(4): e9979. doi: 10.1371/journal.pone.0009979
    [128]
    Majumder S, Richardson A, Strong R, et al. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits[J]. PLoS One, 2011, 6(9): e25416. doi: 10.1371/journal.pone.0025416
    [129]
    Cassano T, Magini A, Giovagnoli S, et al. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer's disease[J]. Exp Neurol, 2019, 311: 88–105. doi: 10.1016/j.expneurol.2018.09.011
    [130]
    Jiang T, Yu J, Zhu X, et al. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer's disease[J]. Pharmacol Res, 2014, 81: 54–63. doi: 10.1016/j.phrs.2014.02.008
    [131]
    Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis[J]. Science, 2011, 332(6036): 1429–1433. doi: 10.1126/science.1204592
    [132]
    Xiao Q, Yan P, Ma X, et al. Neuronal-targeted TFEB accelerates Lysosomal degradation of APP, reducing Aβ generation and Amyloid plaque pathogenesis[J]. J Neurosci, 2015, 35(35): 12137–12151. doi: 10.1523/JNEUROSCI.0705-15.2015
    [133]
    Martini-Stoica H, Xu Y, Ballabio A, et al. The Autophagy-Lysosomal pathway in Neurodegeneration: a TFEB perspective[J]. Trends Neurosci, 2016, 39(4): 221–234. doi: 10.1016/j.tins.2016.02.002
    [134]
    Song J, Sun Y, Peluso I, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition[J]. Autophagy, 2016, 12(8): 1372–1389. doi: 10.1080/15548627.2016.1179404
    [135]
    Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1[J]. Nat Cell Biol, 2016, 18(10): 1065–1077. doi: 10.1038/ncb3407
    [136]
    Koenig AM, Mechanic-Hamilton D, Xie S, et al. Effects of the insulin sensitizer Metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study[J]. Alzheimer Dis Assoc Disord, 2017, 31(2): 107–113. doi: 10.1097/WAD.0000000000000202
    [137]
    Luchsinger JA, Perez T, Chang H, et al. Metformin in Amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial[J]. J Alzheimer's Dis, 2016, 51(2): 501–514. doi: 10.3233/JAD-150493
    [138]
    Forlenza OV, Radanovic M, Talib LL, et al. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial[J]. Br J Psychiatry, 2019, 215(5): 668–674. doi: 10.1192/bjp.2019.76
    [139]
    Devanand DP, Crocco E, Forester BP, et al. Low dose lithium treatment of Behavioral complications in Alzheimer's disease: Lit-AD randomized clinical trial[J]. Am J Geriatr Psychiatry, 2022, 30(1): 32–42. doi: 10.1016/j.jagp.2021.04.014
    [140]
    Devanand DP, Strickler JG, Huey ED, et al. Lithium treatment for agitation in Alzheimer's disease (Lit-AD): clinical rationale and study design[J]. Contemp Clin Trials, 2018, 71: 33–39. doi: 10.1016/j.cct.2018.05.019
    [141]
    Steele JW, Lachenmayer ML, Ju S, et al. Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse model[J]. Mol Psychiatry, 2013, 18(8): 889–897. doi: 10.1038/mp.2012.106
    [142]
    Son SM, Shin HJ, Byun J, et al. Metformin facilitates amyloid-β generation by β- and γ-Secretases via Autophagy activation[J]. J Alzheimer's Dis, 2016, 51(4): 1197–1208. doi: 10.3233/JAD-151200
    [143]
    Du J, Liang Y, Xu F, et al. Trehalose rescues Alzheimer's disease phenotypes in APP/PS1 transgenic mice[J]. J Pharmacy Pharmacol, 2013, 65(12): 1753–1756. doi: 10.1111/jphp.12108
    [144]
    Lonskaya I, Hebron ML, Selby ST, et al. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer's disease models[J]. Neuroscience, 2015, 304: 316–327. doi: 10.1016/j.neuroscience.2015.07.070
    [145]
    Chen Y, Chen Y, Liang Y, et al. Berberine mitigates cognitive decline in an Alzheimer's disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance[J]. Biomed Pharmacother, 2020, 121: 109670. doi: 10.1016/j.biopha.2019.109670
    [146]
    Pierce A, Podlutskaya N, Halloran JJ, et al. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease[J]. J Neurochem, 2013, 124(6): 880–893. doi: 10.1111/jnc.12080
    [147]
    Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments[J]. J Biol Chem, 2010, 285(17): 13107–13120. doi: 10.1074/jbc.M110.100420
    [148]
    Frederick C, Ando K, Leroy K, et al. Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice[J]. J Alzheimer's Dis, 2015, 44(4): 1145–1156. doi: 10.3233/JAD-142097
    [149]
    Li L, Zhang S, Zhang X, et al. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer's disease[J]. Curr Alzheimer Res, 2013, 10(4): 433–441. doi: 10.2174/1567205011310040008
    [150]
    Umeda T, Ono K, Sakai A, et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers[J]. Brain, 2016, 139(5): 1568–1586. doi: 10.1093/brain/aww042
    [151]
    Chandra S, Jana M, Pahan K. Aspirin induces Lysosomal biogenesis and attenuates Amyloid plaque pathology in a mouse model of Alzheimer's disease via PPARα[J]. J Neurosci, 2018, 38(30): 6682–6699. doi: 10.1523/JNEUROSCI.0054-18.2018
    [152]
    Chandra S, Roy A, Jana M, et al. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer's disease mouse model[J]. Neurobiol Dis, 2019, 124: 379–395. doi: 10.1016/j.nbd.2018.12.007
    [153]
    Meng X, Luo Y, Liang T, et al. Gypenoside XVII enhances Lysosome biogenesis and Autophagy flux and accelerates Autophagic clearance of Amyloid-β through TFEB activation[J]. J Alzheimer's Dis, 2016, 52(3): 1135–1150. doi: 10.3233/JAD-160096
    [154]
    Zhang X, Heng X, Li T, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer's disease transgenic mouse model[J]. J Alzheimer's Dis, 2011, 24(4): 739–749. doi: 10.3233/JAD-2011-101875
    [155]
    Aprahamian I, Santos FS, Dos Santos B, et al. Long-term, low-dose lithium treatment does not impair renal function in the elderly: a 2-year randomized, placebo-controlled trial followed by single-blind extension[J]. J Clin Psychiatry, 2014, 75(7): e672–e678. doi: 10.4088/JCP.13m08741
    [156]
    Forlenza OV, Diniz BS, Radanovic M, et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial[J]. Br J Psychiatry, 2011, 198(5): 351–356. doi: 10.1192/bjp.bp.110.080044
    [157]
    Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease[J]. J Neuroinflammation, 2017, 14(1): 1. doi: 10.1186/s12974-016-0779-0
    [158]
    Stites SD, Turner RS, Gill J, et al. Research attitudes questionnaire scores predict Alzheimer's disease clinical trial dropout[J]. Clin Trials, 2021, 18(2): 237–244. doi: 10.1177/1740774520982315
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (142) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return