Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Minghao Yuan, Yangyang Wang, Zhenting Huang, Feng Jing, Peifeng Qiao, Qian Zou, Jing Li, Zhiyou Cai. Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research[J]. The Journal of Biomedical Research, 2023, 37(1): 30-46. doi: 10.7555/JBR.36.20220145
Citation: Minghao Yuan, Yangyang Wang, Zhenting Huang, Feng Jing, Peifeng Qiao, Qian Zou, Jing Li, Zhiyou Cai. Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research[J]. The Journal of Biomedical Research, 2023, 37(1): 30-46. doi: 10.7555/JBR.36.20220145

Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research

doi: 10.7555/JBR.36.20220145
More Information
  • Corresponding author: Zhiyou Cai, Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China. Tel/Fax: +86-23-63515796/+86-23-63515796, E-mail: caizhiyou@ucas.ac.cn
  • Received: 2022-06-15
  • Revised: 2022-07-18
  • Accepted: 2022-08-04
  • Published: 2022-09-28
  • Issue Date: 2023-01-28
  • Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. The major pathological changes in AD progression are the generation and accumulation of amyloid-beta (Aβ) peptides as well as the presence of abnormally hyperphosphorylated tau proteins in the brain. Autophagy is a conserved degradation pathway that eliminates abnormal protein aggregates and damaged organelles. Previous studies have suggested that autophagy plays a key role in the production and clearance of Aβ peptides to maintain a steady-state of Aβ peptides levels. However, a growing body of evidence suggests that autophagy is significantly impaired in the pathogenesis of AD, especially in Aβ metabolism. Therefore, this article reviews the latest studies concerning the mechanisms of autophagy, the metabolism of Aβ peptides, and the defective autophagy in the production and clearance of Aβ peptides. Here, we also summarize the established and new strategies for targeting autophagy in vivo and through clinical AD trials to identify gaps in our knowledge and to generate further questions.


  • CLC number: R749.16, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies[J]. Cell, 2012, 148(6): 1204–1222. doi: 10.1016/j.cell.2012.02.040
    Peters C, Bascuñán D, Burgos CF, et al. Characterization of a new molecule capable of inhibiting several steps of the amyloid cascade in Alzheimer's disease[J]. Neurobiol Dis, 2020, 141: 104938. doi: 10.1016/j.nbd.2020.104938
    Rai SN, Singh C, Singh A, et al. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer's disease[J]. Mol Neurobiol, 2020, 57(7): 3075–3088. doi: 10.1007/s12035-020-01945-y
    Alzheimer's Disease Intermational. World alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends[R]. London: Alzheimer's Disease Intermational, 2015.
    Ingelsson M, Fukumoto H, Newell KL, et al. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain[J]. Neurology, 2004, 62(6): 925–931. doi: 10.1212/01.WNL.0000115115.98960.37
    LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer's disease[J]. Nat Rev Neurosci, 2007, 8(7): 499–509. doi: 10.1038/nrn2168
    Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer's disease: implications for mitochondrially targeted antioxidant therapeutics[J]. J Biomed Biotechnol, 2006, 2006: 31372. doi: 10.1155/JBB/2006/31372
    Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics[J]. Biochim Biophys Acta Mol Basis Dis, 2012, 1822(5): 639–649. doi: 10.1016/j.bbadis.2011.10.011
    Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders[J]. Antioxid Redox Signaling, 2010, 13(11): 1763–1811. doi: 10.1089/ars.2009.3074
    Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis[J]. BioFactors, 2009, 35(2): 146–160. doi: 10.1002/biof.22
    Calabrese EJ, Iavicoli I, Calabrese V. Hormesis: why it is important to biogerontologists[J]. Biogerontology, 2012, 13(3): 215–235. doi: 10.1007/s10522-012-9374-7
    Zhang Y, Ahn YH, Benjamin I, et al. HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway[J]. Chem Biol, 2011, 18(11): 1355–1361. doi: 10.1016/j.chembiol.2011.09.008
    Drake J, Sultana R, Aksenova M, et al. Elevation of mitochondrial glutathione by γ-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress[J]. J Neurosci Res, 2003, 74(6): 917–927. doi: 10.1002/jnr.10810
    Mancuso C, Pani G, Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species[J]. Redox Rep, 2006, 11(5): 207–213. doi: 10.1179/135100006X154978
    Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease[J]. Alzheimer's Dement, 2012, 8(1): 1–13. doi: 10.1016/j.jalz.2011.10.007
    Reiss AB, Arain HA, Stecker MM, et al. Amyloid toxicity in Alzheimer's disease[J]. Rev Neurosci, 2018, 29(6): 613–627. doi: 10.1515/revneuro-2017-0063
    Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001, 81(2): 741–766. doi: 10.1152/physrev.2001.81.2.741
    Wei Y, Zhou J, Wu J, et al. ERβ promotes Aβ degradation via the modulation of autophagy[J]. Cell Death Dis, 2019, 10(8): 565. doi: 10.1038/s41419-019-1786-8
    Zhang W, Xu C, Sun J, et al. Impairment of the autophagy-lysosomal pathway in Alzheimer's diseases: pathogenic mechanisms and therapeutic potential[J]. Acta Pharm Sin B, 2022, 12(3): 1019–1040. doi: 10.1016/j.apsb.2022.01.008
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms[J]. J Pathol, 2010, 221(1): 3–12. doi: 10.1002/path.2697
    Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)[J]. Autophagy, 2021, 17(1): 1–382. doi: 10.1080/15548627.2020.1797280
    Savini M, Folick A, Lee YT, et al. Lysosome lipid signalling from the periphery to neurons regulates longevity[J]. Nat Cell Biol, 2022, 24(6): 906–916. doi: 10.1038/s41556-022-00926-8
    Reddy PH, Oliver DM. Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in alzheimer's disease[J]. Cells, 2019, 8(5): 488. doi: 10.3390/cells8050488
    Eiyama A, Kondo-Okamoto N, Okamoto K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast[J]. FEBS Lett, 2013, 587(12): 1787–1792. doi: 10.1016/j.febslet.2013.04.030
    Lipinski MM. Towards the global understanding of the autophagy regulatory network[J]. Autophagy, 2010, 6(8): 1218–1220. doi: 10.4161/auto.6.8.13772
    Ling DJ, Salvaterra PM. A central role for autophagy in Alzheimer-type neurodegeneration[J]. Autophagy, 2009, 5(5): 738–740. doi: 10.4161/auto.5.5.8626
    Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer's disease Aβ peptide[J]. BioEssays, 2014, 36(6): 570–578. doi: 10.1002/bies.201400002
    Ohta K, Mizuno A, Ueda M, et al. Autophagy impairment stimulates PS1 expression and γ-secretase activity[J]. Autophagy, 2010, 6(3): 345–352. doi: 10.4161/auto.6.3.11228
    Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis[J]. J Cell Physiol, 2019, 234(6): 8094–8112. doi: 10.1002/jcp.27588
    Hung COY, Livesey FJ. Altered γ-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer's disease[J]. Cell Rep, 2018, 25(13): 3647–3660.e2. doi: 10.1016/j.celrep.2018.11.095
    Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease[J]. FASEB J, 2017, 31(7): 2729–2743. doi: 10.1096/fj.201700359
    Kiššová IB, Salin B, Schaeffer J, et al. Selective and non-selective autophagic degradation of mitochondria in yeast[J]. Autophagy, 2007, 3(4): 329–336. doi: 10.4161/auto.4034
    Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]. Mol Cell Biol, 2000, 20(15): 5454–5468. doi: 10.1128/MCB.20.15.5454-5468.2000
    Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy[J]. Trends Cell Biol, 2016, 26(1): 6–16. doi: 10.1016/j.tcb.2015.08.010
    Zaffagnini G, Martens S. Mechanisms of selective autophagy[J]. J Mol Biol, 2016, 428(9): 1714–1724. doi: 10.1016/j.jmb.2016.02.004
    Denton D, Xu T, Kumar S. Autophagy as a pro-death pathway[J]. Immunol Cell Biol, 2015, 93(1): 35–42. doi: 10.1038/icb.2014.85
    Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular model systems[J]. Trends Cell Biol, 2015, 25(7): 376–387. doi: 10.1016/j.tcb.2015.03.001
    Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40(2): 280–293. doi: 10.1016/j.molcel.2010.09.023
    Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work?[J]. Annu Rev Biochem, 2016, 85: 685–713. doi: 10.1146/annurev-biochem-060815-014556
    Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811–1836. doi: 10.15252/embj.201796697
    Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207–215. doi: 10.1080/15548627.2017.1378838
    Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex[J]. Nat Rev Mol Cell Biol, 2013, 14(12): 759–774. doi: 10.1038/nrm3696
    Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy[J]. Curr Opin Cell Biol, 2016, 39: 61–68. doi: 10.1016/j.ceb.2016.02.010
    O'Keefe L, Denton D. Using Drosophila models of amyloid toxicity to study autophagy in the pathogenesis of Alzheimer's disease[J]. BioMed Res Int, 2018, 2018: 5195416. doi: 10.1155/2018/5195416
    Antonioli M, Di Rienzo M, Piacentini M, et al. Emerging mechanisms in initiating and terminating autophagy[J]. Trends Biochem Sci, 2017, 42(1): 28–41. doi: 10.1016/j.tibs.2016.09.008
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728–741. doi: 10.1016/j.cell.2011.10.026
    Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy[J]. Essays Biochem, 2013, 55: 39–50. doi: 10.1042/bse0550039
    Perera RM, Zoncu R. The lysosome as a regulatory hub[J]. Annu Rev Cell Dev Biol, 2016, 32: 223–253. doi: 10.1146/annurev-cellbio-111315-125125
    Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]. Cell, 2012, 151(6): 1256–1269. doi: 10.1016/j.cell.2012.11.001
    Fader C, Sánchez D, Furlán M, et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells[J]. Traffic, 2008, 9(2): 230–250. doi: 10.1111/j.1600-0854.2007.00677.x
    Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: endosomal functions and beyond[J]. Semin Cell Dev Biol, 2018, 74: 21–28. doi: 10.1016/j.semcdb.2017.08.014
    Mizushima N. Autophagy: process and function[J]. Genes Dev, 2007, 21(22): 2861–2873. doi: 10.1101/gad.1599207
    Morel E, Chamoun Z, Lasiecka ZM, et al. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system[J]. Nat Commun, 2013, 4: 2250. doi: 10.1038/ncomms3250
    Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease[J]. J Neurochem, 1995, 65(4): 1431–1444. doi: 10.1046/j.1471-4159.1995.65041431.x
    Tang Y, Scott DA, Das U, et al. Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid β-protein oligomers[J]. Traffic, 2012, 13(5): 681–693. doi: 10.1111/j.1600-0854.2012.01340.x
    Palmer BW, Ryan KA, Kim HM, et al. Neuropsychological correlates of capacity determinations in Alzheimer disease: implications for assessment[J]. Am J Geriatr Psychiatry, 2013, 21(4): 373–381. doi: 10.1016/j.jagp.2012.11.008
    Dunys J, Valverde A, Checler F. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?[J]. J Biol Chem, 2018, 293(40): 15419–15428. doi: 10.1074/jbc.R118.003999
    Grimm MOW, Mett J, Stahlmann CP, et al. Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer's disease[J]. Front Aging Neurosci, 2013, 5: 98. doi: 10.3389/fnagi.2013.00098s
    Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease[J]. Front Aging Neurosci, 2014, 6: 93. doi: 10.1074/jbc.M801487200
    Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners?[J]. Neuron, 2014, 81(4): 740–754. doi: 10.1016/j.neuron.2014.01.045
    Wang Y, Zhou H, Zhou X. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives[J]. Drug Discov Today, 2006, 11(19–20): 931–938. doi: 10.1016/j.drudis.2006.08.004
    Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181–1194. doi: 10.1007/s12035-014-9070-5
    Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier[J]. J Clini Invest, 2000, 106(12): 1489–1499. doi: 10.1172/JCI10498
    Xiang Y, Bu X, Liu Y, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer's disease[J]. Acta Neuropathol, 2015, 130(4): 487–499. doi: 10.1007/s00401-015-1477-1
    Matsuzaki K, Kato K, Yanagisawa K. Ganglioside-mediated assembly of amyloid β-protein: roles in Alzheimer's disease[J]. Prog Mol Biol Transl Sci, 2018, 156: 413–434. doi: 10.1016/bs.pmbts.2017.10.005
    Kanekiyo T, Liu C, Shinohara M, et al. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β[J]. J Neurosci, 2012, 32(46): 16458–16465. doi: 10.1523/JNEUROSCI.3987-12.2012
    Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study[J]. J Neuropathol, 2005, 64(2): 113–122. doi: 10.1093/jnen/64.2.113
    Faborode OS, Dalle E, Mabandla MV. Trauma-like exposure alters neuronal apoptosis, Bin1, Fkbp5 and NR2B expression in an amyloid-beta (1–42) rat model of Alzheimer's disease[J]. Neurobiol Learn Mem, 2022, 190: 107611. doi: 10.1016/j.nlm.2022.107611
    Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148–160. doi: 10.1038/s41583-019-0132-6
    Esselun C, Dieter F, Sus N, et al. Walnut oil reduces Aβ levels and increases neurite length in a cellular model of early Alzheimer disease[J]. Nutrients, 2022, 14(9): 1694. doi: 10.3390/nu14091694
    Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance[J]. Exp Neurol, 2012, 236(1): 1–5. doi: 10.1016/j.expneurol.2012.04.021
    Cai Z, Hussain MD, Yan L. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease[J]. Int J Neurosci, 2014, 124(5): 307–321. doi: 10.3109/00207454.2013.833510
    Felsky D, Roostaei T, Nho K, et al. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain[J]. Nat Commun, 2019, 10(1): 409. doi: 10.1038/s41467-018-08279-3
    Zhu M, Wang X, Schultzberg M, et al. Differential regulation of resolution in inflammation induced by amyloid-β42 and lipopolysaccharides in human microglia[J]. J Alzheimers Dis, 2015, 43(4): 1237–1250. doi: 10.3233/JAD-141233
    D'Errico P, Ziegler-Waldkirch S, Aires V, et al. Microglia contribute to the propagation of Aβ into unaffected brain tissue[J]. Nat Neurosci, 2022, 25(1): 20–25. doi: 10.1038/s41593-021-00951-0
    Pensalfini A, Kim S, Subbanna S, et al. Endosomal dysfunction induced by directly overactivating Rab5 recapitulates prodromal and neurodegenerative features of Alzheimer's disease[J]. Cell Rep, 2020, 33(8): 108420. doi: 10.1016/j.celrep.2020.108420
    Lee JH, Yang D, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques[J]. Nat Neurosci, 2022, 25(6): 688–701. doi: 10.1038/s41593-022-01084-8
    Fukumoto H, Rosene DL, Moss MB, et al. β-secretase activity increases with aging in human, monkey, and mouse brain[J]. Am J Pathol, 2004, 164(2): 719–725. doi: 10.1016/S0002-9440(10)63159-8
    Vassar R, Kovacs DM, Yan RQ, et al. The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential[J]. J Neurosci, 2009, 29(41): 12787–12794. doi: 10.1523/JNEUROSCI.3657-09.2009
    Willem M, Lammich S, Haass C. Function, regulation and therapeutic properties of β-secretase (BACE1)[J]. Semin Cell Dev Biol, 2009, 20(2): 175–182. doi: 10.1016/j.semcdb.2009.01.003
    Evin G, Barakat A, Masters CL. BACE: therapeutic target and potential biomarker for Alzheimer's disease[J]. Int J Biochem Cell Biol, 2010, 42(12): 1923–1926. doi: 10.1016/j.biocel.2010.08.017
    Huse JT, Pijak DS, Leslie GJ, et al. Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme: the Alzheimer's disease β-secretase[J]. J Biol Chem, 2000, 275(43): 33729–33737. doi: 10.1074/jbc.M004175200
    Yang L, Lindholm K, Yan R, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease[J]. Nat Med, 2003, 9(1): 3–4. doi: 10.1038/nm0103-3
    Kang EL, Biscaro B, Piazza F, et al. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus[J]. J Biol Chem, 2012, 287(51): 42867–42880. doi: 10.1074/jbc.M112.407072
    Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy[J]. J Neurosci, 2011, 31(21): 7817–30. doi: 10.1523/JNEUROSCI.6412-10.2011
    Maday S, Holzbaur E. Autophagosome assembly and cargo capture in the distal axon[J]. Autophagy, 2012, 8(5): 858–60. doi: 10.4161/auto.20055
    Maday S, Holzbaur EF. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway[J]. Dev Cell, 2014, 30(1): 71–85. doi: 10.1016/j.devcel.2014.06.001
    Cheng X, Zhou B, Lin M, et al. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes[J]. J Cell Biol, 2015, 209(3): 377–386. doi: 10.1083/jcb.201412046
    Maday S, Holzbaur ELF. Compartment-specific regulation of autophagy in primary neurons[J]. J Neurosci, 2016, 36(22): 5933–5545. doi: 10.1523/JNEUROSCI.4401-15.2016
    Feng T, Tammineni P, Agrawal C, et al. Autophagy-mediated Regulation of BACE1 protein trafficking and degradation[J]. J Biol Chem, 2017, 292(5): 1679–1690. doi: 10.1074/jbc.M116.766584
    Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited[J]. Alzheimers Dement, 2016, 12(6): 733–748. doi: 10.1016/j.jalz.2016.01.012
    Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: time for a clinical trial?[J]. Sci Transl Med, 2019, 11(476): eaar4289. doi: 10.1126/scitranslmed.aar4289
    Talboom JS, Velazquez R, Oddo S. The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer's disease[J]. NPJ Aging Mech Dis, 2015, 1: 15008. doi: 10.1038/npjamd.2015.8
    Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD[J]. J Neurochem, 2015, 133(5): 739–749. doi: 10.1111/jnc.13037
    Tecalco-Cruz A, Pedraza-Chaverri J, Briones-Herrera A, et al. Protein degradation-associated mechanisms that are affected in Alzheimer´s disease[J]. Mol Cell Biochem, 2022, 477(3): 915–925. doi: 10.1007/s11010-021-04334-8
    Wu H, Lu M, Wang W, et al. Lamotrigine reduces β-site AβPP-cleaving enzyme 1 protein levels through induction of autophagy[J]. J Alzheimer's Dis, 2015, 46(4): 863–76. doi: 10.3233/JAD-143162
    Ordóñez-Gutiérrez L, Benito-Cuesta I, Abad JL, et al. Dihydroceramide desaturase 1 inhibitors reduce amyloid-β levels in primary neurons from an alzheimer's disease transgenic model[J]. Pharm Res, 2018, 35(3): 49. doi: 10.1007/s11095-017-2312-2
    Cai Z, Zhou Y, Liu Z, et al. Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of γ-secretase complex[J]. Neuropsychiatr Dis Treat, 2015, 11: 2091–2099. doi: 10.2147/NDT.S84755
    Caccamo A, Ferreira E, Branca C, et al. p62 improves AD-like pathology by increasing autophagy[J]. Mol Psychiatry, 2017, 22(6): 865–873. doi: 10.1038/mp.2016.139
    Di Meco A, Li J, Blass BE, et al. 12/15-Lipoxygenase inhibition reverses cognitive impairment, brain amyloidosis, and tau pathology by stimulating autophagy in aged triple transgenic mice[J]. Biol Psychiatry, 2017, 81(2): 92–100. doi: 10.1016/j.biopsych.2016.05.023
    Gali CC, Fanaee-Danesh E, Zandl-Lang M, et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice[J]. Mol Cell Neurosci, 2019, 99: 103390. doi: 10.1016/j.mcn.2019.103390
    Lee JA, Gao F. Regulation of Aβ pathology by beclin 1: a protective role for autophagy?[J]. J Clin Invest, 2008, 118(6): 2015–2018. doi: 10.1172/JCI35662
    Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice[J]. J Clin Invest, 2008, 118(6): 2190–2199. doi: 10.1172/JCI33585
    Sasahara K, Morigaki K, Shinya K. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure[J]. Phys Chem Chem Phys, 2013, 15(23): 8929–8939. doi: 10.1039/c3cp44517h
    Seo BR, Lee SJ, Cho KS, et al. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells[J]. Neurobiol Aging, 2015, 36(12): 3228–3238. doi: 10.1016/j.neurobiolaging.2015.09.006
    Lafay-Chebassier C, Page G, Ingrand S, et al. P1-12 Modulation des voies mTOR, p70S6K et ERK du contrôle traductionnel par le peptide amyloïde Ab 1-42 dans des cellules de neuroblastomes humains[J]. Rev Neurol, 2005, 161(12): 88–89. doi: 10.1016/S0035-3787(05)85328-7
    Nilsson P, Loganathan K, Sekiguchi M, et al. Aβ secretion and plaque formation depend on autophagy[J]. Cell Rep, 2013, 5(1): 61–69. doi: 10.1016/j.celrep.2013.08.042
    Wang H, Zhang T, Kuerban B, et al. Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice[J]. Neurosci Bull, 2015, 31(4): 491–504. doi: 10.1007/s12264-015-1546-4
    Xue Z, Guo Y, Fang Y. Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells[J]. Neurosci Lett, 2016, 618: 50–57. doi: 10.1016/j.neulet.2016.02.044
    Wang B, Her G, Hu M, et al. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2017, 114(15): E3129–E3138. doi: 10.1073/pnas.1618804114
    Ramanathan A, Nelson AR, Sagare AP, et al. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1[J]. Front Aging Neurosci, 2015, 7: 136. doi: 10.3389/fnagi.2015.00136
    Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance[J]. Nat Neurosci, 2015, 18(7): 978–987. doi: 10.1038/nn.4025
    Chan Y, Chen W, Wan W, et al. Aβ1-42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd. 3 cells[J]. Exp Cell Res, 2018, 369(2): 266–274. doi: 10.1016/j.yexcr.2018.05.025
    Farr SA, Roesler E, Niehoff ML, et al. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer's disease[J]. J Alzheimer's Dis, 2019, 68(4): 1699–1710. doi: 10.3233/JAD-181240
    Luo R, Su L, Li G, et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model[J]. Autophagy, 2020, 16(1): 52–69. doi: 10.1080/15548627.2019.1596488
    Ozcelik S, Fraser G, Castets P, et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice[J]. PLoS One, 2013, 8(5): e62459. doi: 10.1371/journal.pone.0062459
    Song J, Malampati S, Zeng Y, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer's disease models[J]. Aging Cell, 2020, 19(2): e13069. doi: 10.1111/acel.13069
    Zhang W, Wang J, Yang C. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease[J]. Autophagy, 2022, 18(7): 1740–1742. doi: 10.1080/15548627.2022.2046437
    Yang C, Zhang W, Dong X, et al. A natural product solution to aging and aging-associated diseases[J]. Pharmacol Ther, 2020, 216: 107673. doi: 10.1016/j.pharmthera.2020.107673
    Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice[J]. Brain Behav Immun, 2018, 69: 351–363. doi: 10.1016/j.bbi.2017.12.009
    Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism[J]. J Biol Chem, 2010, 285(12): 9100–9113. doi: 10.1074/jbc.M109.060061
    Drygalski K, Fereniec E, Koryciński K, et al. Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials[J]. Exp Gerontol, 2018, 113: 36–47. doi: 10.1016/j.exger.2018.09.019
    Kong W, Vernieri C, Foiani M, et al. Berberine in the treatment of metabolism-related chronic diseases: a drug cloud (dCloud) effect to target multifactorial disorders[J]. Pharmacol Ther, 2020, 209: 107496. doi: 10.1016/j.pharmthera.2020.107496
    Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes, 2006, 55(8): 2256–2264. doi: 10.2337/db06-0006
    Huang M, Jiang X, Liang Y, et al. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease[J]. Exp Gerontol, 2017, 91: 25–33. doi: 10.1016/j.exger.2017.02.004
    Li J, Kim S, Blenis J. Rapamycin: one drug, many effects[J]. Cell Metab, 2014, 19(3): 373–379. doi: 10.1016/j.cmet.2014.01.001
    Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease[J]. PLoS One, 2010, 5(4): e9979. doi: 10.1371/journal.pone.0009979
    Majumder S, Richardson A, Strong R, et al. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits[J]. PLoS One, 2011, 6(9): e25416. doi: 10.1371/journal.pone.0025416
    Cassano T, Magini A, Giovagnoli S, et al. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer's disease[J]. Exp Neurol, 2019, 311: 88–105. doi: 10.1016/j.expneurol.2018.09.011
    Jiang T, Yu J, Zhu X, et al. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer's disease[J]. Pharmacol Res, 2014, 81: 54–63. doi: 10.1016/j.phrs.2014.02.008
    Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis[J]. Science, 2011, 332(6036): 1429–1433. doi: 10.1126/science.1204592
    Xiao Q, Yan P, Ma X, et al. Neuronal-targeted TFEB accelerates Lysosomal degradation of APP, reducing Aβ generation and Amyloid plaque pathogenesis[J]. J Neurosci, 2015, 35(35): 12137–12151. doi: 10.1523/JNEUROSCI.0705-15.2015
    Martini-Stoica H, Xu Y, Ballabio A, et al. The Autophagy-Lysosomal pathway in Neurodegeneration: a TFEB perspective[J]. Trends Neurosci, 2016, 39(4): 221–234. doi: 10.1016/j.tins.2016.02.002
    Song J, Sun Y, Peluso I, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition[J]. Autophagy, 2016, 12(8): 1372–1389. doi: 10.1080/15548627.2016.1179404
    Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1[J]. Nat Cell Biol, 2016, 18(10): 1065–1077. doi: 10.1038/ncb3407
    Koenig AM, Mechanic-Hamilton D, Xie S, et al. Effects of the insulin sensitizer Metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study[J]. Alzheimer Dis Assoc Disord, 2017, 31(2): 107–113. doi: 10.1097/WAD.0000000000000202
    Luchsinger JA, Perez T, Chang H, et al. Metformin in Amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial[J]. J Alzheimer's Dis, 2016, 51(2): 501–514. doi: 10.3233/JAD-150493
    Forlenza OV, Radanovic M, Talib LL, et al. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial[J]. Br J Psychiatry, 2019, 215(5): 668–674. doi: 10.1192/bjp.2019.76
    Devanand DP, Crocco E, Forester BP, et al. Low dose lithium treatment of Behavioral complications in Alzheimer's disease: Lit-AD randomized clinical trial[J]. Am J Geriatr Psychiatry, 2022, 30(1): 32–42. doi: 10.1016/j.jagp.2021.04.014
    Devanand DP, Strickler JG, Huey ED, et al. Lithium treatment for agitation in Alzheimer's disease (Lit-AD): clinical rationale and study design[J]. Contemp Clin Trials, 2018, 71: 33–39. doi: 10.1016/j.cct.2018.05.019
    Steele JW, Lachenmayer ML, Ju S, et al. Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse model[J]. Mol Psychiatry, 2013, 18(8): 889–897. doi: 10.1038/mp.2012.106
    Son SM, Shin HJ, Byun J, et al. Metformin facilitates amyloid-β generation by β- and γ-Secretases via Autophagy activation[J]. J Alzheimer's Dis, 2016, 51(4): 1197–1208. doi: 10.3233/JAD-151200
    Du J, Liang Y, Xu F, et al. Trehalose rescues Alzheimer's disease phenotypes in APP/PS1 transgenic mice[J]. J Pharmacy Pharmacol, 2013, 65(12): 1753–1756. doi: 10.1111/jphp.12108
    Lonskaya I, Hebron ML, Selby ST, et al. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer's disease models[J]. Neuroscience, 2015, 304: 316–327. doi: 10.1016/j.neuroscience.2015.07.070
    Chen Y, Chen Y, Liang Y, et al. Berberine mitigates cognitive decline in an Alzheimer's disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance[J]. Biomed Pharmacother, 2020, 121: 109670. doi: 10.1016/j.biopha.2019.109670
    Pierce A, Podlutskaya N, Halloran JJ, et al. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease[J]. J Neurochem, 2013, 124(6): 880–893. doi: 10.1111/jnc.12080
    Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments[J]. J Biol Chem, 2010, 285(17): 13107–13120. doi: 10.1074/jbc.M110.100420
    Frederick C, Ando K, Leroy K, et al. Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice[J]. J Alzheimer's Dis, 2015, 44(4): 1145–1156. doi: 10.3233/JAD-142097
    Li L, Zhang S, Zhang X, et al. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer's disease[J]. Curr Alzheimer Res, 2013, 10(4): 433–441. doi: 10.2174/1567205011310040008
    Umeda T, Ono K, Sakai A, et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers[J]. Brain, 2016, 139(5): 1568–1586. doi: 10.1093/brain/aww042
    Chandra S, Jana M, Pahan K. Aspirin induces Lysosomal biogenesis and attenuates Amyloid plaque pathology in a mouse model of Alzheimer's disease via PPARα[J]. J Neurosci, 2018, 38(30): 6682–6699. doi: 10.1523/JNEUROSCI.0054-18.2018
    Chandra S, Roy A, Jana M, et al. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer's disease mouse model[J]. Neurobiol Dis, 2019, 124: 379–395. doi: 10.1016/j.nbd.2018.12.007
    Meng X, Luo Y, Liang T, et al. Gypenoside XVII enhances Lysosome biogenesis and Autophagy flux and accelerates Autophagic clearance of Amyloid-β through TFEB activation[J]. J Alzheimer's Dis, 2016, 52(3): 1135–1150. doi: 10.3233/JAD-160096
    Zhang X, Heng X, Li T, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer's disease transgenic mouse model[J]. J Alzheimer's Dis, 2011, 24(4): 739–749. doi: 10.3233/JAD-2011-101875
    ClinicalTrials.gov. Effect of insulin sensitizer metformin on ad biomarkers[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT01965756.
    ClinicalTrials.gov. Metformin in Alzheimer's dementia prevention (MAP)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04098666.
    ClinicalTrials.gov. Rapamycin–Effects on Alzheimer's and cognitive health (REACH)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04629495.
    ClinicalTrials.gov. Cognition, Age, and RaPamycin Effectiveness-DownregulatIon of the mTOR-pathway (CARPE DIEM)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04200911.
    Aprahamian I, Santos F, dos Santos B, et al. Long-term, low-dose lithium treatment does not impair renal function in the elderly: a 2-year randomized, placebo-controlled trial followed by single-blind extension[J]. J Clin Psychiatry, 2014, 75(7): e672–e678. doi: 10.4088/JCP.13m08741
    Forlenza O, Diniz B, Radanovic M, et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial[J]. Br J Psychiatry, 2011, 198(5): 351–356. doi: 10.1192/bjp.bp.110.080044
    ClinicalTrials.gov. Lithium as a treatment to prevent impairment of cognition in elders (LATTICE) [EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT03185208.
    ClinicalTrials.gov. Effect of lithium and divalproex in Alzheimer's disease[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT00088387.
    ClinicalTrials.gov. A phase 3 efficacy study of dimebon in patients with moderate to severe Alzheimer's disease[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT00912288.
    Doody R, Gavrilova S, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer's disease: a randomised, double-blind, placebo-controlled study[J]. Lancet, 2008, 372(9634): 207–215. doi: 10.1016/S0140-6736(08)61074-0
    ClinicalTrials.gov. A Phase 3 study to evaluate the safety and tolerability of dimebon patients with mild to moderate Alzheimer's disease[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT00838110.
    Zhu C, Grossman H, Neugroschl J, et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer's disease: A pilot study[J]. Alzheimers Dement (N Y), 2018, 4: 609–616. doi: 10.1016/j.trci.2018.09.009
    Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease[J]. J Neuroinflammation, 2017, 14(1): 1. doi: 10.1186/s12974-016-0779-0
    Stites S, Turner R, Gill J, et al. Research Attitudes Questionnaire scores predict Alzheimer's disease clinical trial dropout[J]. Clin trials, 2021, 18(2): 237–244. doi: 10.1177/1740774520982315
    Pagan F, Hebron M, Valadez E, et al. Nilotinib effects in Parkinson's disease and Dementia with Lewy bodies[J]. J Parkinsons Dis, 2016, 6(3): 503–517. doi: 10.3233/JPD-160867
    ClinicalTrials.gov. Mycose administration for healing Alzheimer Neuropathy (MASHIANE) (MASHIANE)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04663854.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (838) PDF downloads(153) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint