Citation: | Minghao Yuan, Yangyang Wang, Zhenting Huang, Feng Jing, Peifeng Qiao, Qian Zou, Jing Li, Zhiyou Cai. Impaired autophagy in amyloid-beta pathology: A traditional review of recent Alzheimer's research[J]. The Journal of Biomedical Research, 2023, 37(1): 30-46. doi: 10.7555/JBR.36.20220145 |
[1] |
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies[J]. Cell, 2012, 148(6): 1204–1222. doi: 10.1016/j.cell.2012.02.040
|
[2] |
Peters C, Bascuñán D, Burgos CF, et al. Characterization of a new molecule capable of inhibiting several steps of the amyloid cascade in Alzheimer's disease[J]. Neurobiol Dis, 2020, 141: 104938. doi: 10.1016/j.nbd.2020.104938
|
[3] |
Rai SN, Singh C, Singh A, et al. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer's disease[J]. Mol Neurobiol, 2020, 57(7): 3075–3088. doi: 10.1007/s12035-020-01945-y
|
[4] |
Alzheimer's Disease Intermational. World alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends[R]. London: Alzheimer's Disease Intermational, 2015.
|
[5] |
Ingelsson M, Fukumoto H, Newell KL, et al. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain[J]. Neurology, 2004, 62(6): 925–931. doi: 10.1212/01.WNL.0000115115.98960.37
|
[6] |
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer's disease[J]. Nat Rev Neurosci, 2007, 8(7): 499–509. doi: 10.1038/nrn2168
|
[7] |
Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer's disease: implications for mitochondrially targeted antioxidant therapeutics[J]. J Biomed Biotechnol, 2006, 2006: 31372. doi: 10.1155/JBB/2006/31372
|
[8] |
Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics[J]. Biochim Biophys Acta Mol Basis Dis, 2012, 1822(5): 639–649. doi: 10.1016/j.bbadis.2011.10.011
|
[9] |
Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders[J]. Antioxid Redox Signaling, 2010, 13(11): 1763–1811. doi: 10.1089/ars.2009.3074
|
[10] |
Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis[J]. BioFactors, 2009, 35(2): 146–160. doi: 10.1002/biof.22
|
[11] |
Calabrese EJ, Iavicoli I, Calabrese V. Hormesis: why it is important to biogerontologists[J]. Biogerontology, 2012, 13(3): 215–235. doi: 10.1007/s10522-012-9374-7
|
[12] |
Zhang Y, Ahn YH, Benjamin I, et al. HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway[J]. Chem Biol, 2011, 18(11): 1355–1361. doi: 10.1016/j.chembiol.2011.09.008
|
[13] |
Drake J, Sultana R, Aksenova M, et al. Elevation of mitochondrial glutathione by γ-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress[J]. J Neurosci Res, 2003, 74(6): 917–927. doi: 10.1002/jnr.10810
|
[14] |
Mancuso C, Pani G, Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species[J]. Redox Rep, 2006, 11(5): 207–213. doi: 10.1179/135100006X154978
|
[15] |
Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease[J]. Alzheimer's Dement, 2012, 8(1): 1–13. doi: 10.1016/j.jalz.2011.10.007
|
[16] |
Reiss AB, Arain HA, Stecker MM, et al. Amyloid toxicity in Alzheimer's disease[J]. Rev Neurosci, 2018, 29(6): 613–627. doi: 10.1515/revneuro-2017-0063
|
[17] |
Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001, 81(2): 741–766. doi: 10.1152/physrev.2001.81.2.741
|
[18] |
Wei Y, Zhou J, Wu J, et al. ERβ promotes Aβ degradation via the modulation of autophagy[J]. Cell Death Dis, 2019, 10(8): 565. doi: 10.1038/s41419-019-1786-8
|
[19] |
Zhang W, Xu C, Sun J, et al. Impairment of the autophagy-lysosomal pathway in Alzheimer's diseases: pathogenic mechanisms and therapeutic potential[J]. Acta Pharm Sin B, 2022, 12(3): 1019–1040. doi: 10.1016/j.apsb.2022.01.008
|
[20] |
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms[J]. J Pathol, 2010, 221(1): 3–12. doi: 10.1002/path.2697
|
[21] |
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)[J]. Autophagy, 2021, 17(1): 1–382. doi: 10.1080/15548627.2020.1797280
|
[22] |
Savini M, Folick A, Lee YT, et al. Lysosome lipid signalling from the periphery to neurons regulates longevity[J]. Nat Cell Biol, 2022, 24(6): 906–916. doi: 10.1038/s41556-022-00926-8
|
[23] |
Reddy PH, Oliver DM. Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in alzheimer's disease[J]. Cells, 2019, 8(5): 488. doi: 10.3390/cells8050488
|
[24] |
Eiyama A, Kondo-Okamoto N, Okamoto K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast[J]. FEBS Lett, 2013, 587(12): 1787–1792. doi: 10.1016/j.febslet.2013.04.030
|
[25] |
Lipinski MM. Towards the global understanding of the autophagy regulatory network[J]. Autophagy, 2010, 6(8): 1218–1220. doi: 10.4161/auto.6.8.13772
|
[26] |
Ling DJ, Salvaterra PM. A central role for autophagy in Alzheimer-type neurodegeneration[J]. Autophagy, 2009, 5(5): 738–740. doi: 10.4161/auto.5.5.8626
|
[27] |
Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer's disease Aβ peptide[J]. BioEssays, 2014, 36(6): 570–578. doi: 10.1002/bies.201400002
|
[28] |
Ohta K, Mizuno A, Ueda M, et al. Autophagy impairment stimulates PS1 expression and γ-secretase activity[J]. Autophagy, 2010, 6(3): 345–352. doi: 10.4161/auto.6.3.11228
|
[29] |
Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis[J]. J Cell Physiol, 2019, 234(6): 8094–8112. doi: 10.1002/jcp.27588
|
[30] |
Hung COY, Livesey FJ. Altered γ-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer's disease[J]. Cell Rep, 2018, 25(13): 3647–3660.e2. doi: 10.1016/j.celrep.2018.11.095
|
[31] |
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease[J]. FASEB J, 2017, 31(7): 2729–2743. doi: 10.1096/fj.201700359
|
[32] |
Kiššová IB, Salin B, Schaeffer J, et al. Selective and non-selective autophagic degradation of mitochondria in yeast[J]. Autophagy, 2007, 3(4): 329–336. doi: 10.4161/auto.4034
|
[33] |
Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]. Mol Cell Biol, 2000, 20(15): 5454–5468. doi: 10.1128/MCB.20.15.5454-5468.2000
|
[34] |
Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy[J]. Trends Cell Biol, 2016, 26(1): 6–16. doi: 10.1016/j.tcb.2015.08.010
|
[35] |
Zaffagnini G, Martens S. Mechanisms of selective autophagy[J]. J Mol Biol, 2016, 428(9): 1714–1724. doi: 10.1016/j.jmb.2016.02.004
|
[36] |
Denton D, Xu T, Kumar S. Autophagy as a pro-death pathway[J]. Immunol Cell Biol, 2015, 93(1): 35–42. doi: 10.1038/icb.2014.85
|
[37] |
Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular model systems[J]. Trends Cell Biol, 2015, 25(7): 376–387. doi: 10.1016/j.tcb.2015.03.001
|
[38] |
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40(2): 280–293. doi: 10.1016/j.molcel.2010.09.023
|
[39] |
Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work?[J]. Annu Rev Biochem, 2016, 85: 685–713. doi: 10.1146/annurev-biochem-060815-014556
|
[40] |
Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811–1836. doi: 10.15252/embj.201796697
|
[41] |
Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207–215. doi: 10.1080/15548627.2017.1378838
|
[42] |
Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex[J]. Nat Rev Mol Cell Biol, 2013, 14(12): 759–774. doi: 10.1038/nrm3696
|
[43] |
Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy[J]. Curr Opin Cell Biol, 2016, 39: 61–68. doi: 10.1016/j.ceb.2016.02.010
|
[44] |
O'Keefe L, Denton D. Using Drosophila models of amyloid toxicity to study autophagy in the pathogenesis of Alzheimer's disease[J]. BioMed Res Int, 2018, 2018: 5195416. doi: 10.1155/2018/5195416
|
[45] |
Antonioli M, Di Rienzo M, Piacentini M, et al. Emerging mechanisms in initiating and terminating autophagy[J]. Trends Biochem Sci, 2017, 42(1): 28–41. doi: 10.1016/j.tibs.2016.09.008
|
[46] |
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728–741. doi: 10.1016/j.cell.2011.10.026
|
[47] |
Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy[J]. Essays Biochem, 2013, 55: 39–50. doi: 10.1042/bse0550039
|
[48] |
Perera RM, Zoncu R. The lysosome as a regulatory hub[J]. Annu Rev Cell Dev Biol, 2016, 32: 223–253. doi: 10.1146/annurev-cellbio-111315-125125
|
[49] |
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]. Cell, 2012, 151(6): 1256–1269. doi: 10.1016/j.cell.2012.11.001
|
[50] |
Fader C, Sánchez D, Furlán M, et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells[J]. Traffic, 2008, 9(2): 230–250. doi: 10.1111/j.1600-0854.2007.00677.x
|
[51] |
Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: endosomal functions and beyond[J]. Semin Cell Dev Biol, 2018, 74: 21–28. doi: 10.1016/j.semcdb.2017.08.014
|
[52] |
Mizushima N. Autophagy: process and function[J]. Genes Dev, 2007, 21(22): 2861–2873. doi: 10.1101/gad.1599207
|
[53] |
Morel E, Chamoun Z, Lasiecka ZM, et al. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system[J]. Nat Commun, 2013, 4: 2250. doi: 10.1038/ncomms3250
|
[54] |
Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease[J]. J Neurochem, 1995, 65(4): 1431–1444. doi: 10.1046/j.1471-4159.1995.65041431.x
|
[55] |
Tang Y, Scott DA, Das U, et al. Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid β-protein oligomers[J]. Traffic, 2012, 13(5): 681–693. doi: 10.1111/j.1600-0854.2012.01340.x
|
[56] |
Palmer BW, Ryan KA, Kim HM, et al. Neuropsychological correlates of capacity determinations in Alzheimer disease: implications for assessment[J]. Am J Geriatr Psychiatry, 2013, 21(4): 373–381. doi: 10.1016/j.jagp.2012.11.008
|
[57] |
Dunys J, Valverde A, Checler F. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?[J]. J Biol Chem, 2018, 293(40): 15419–15428. doi: 10.1074/jbc.R118.003999
|
[58] |
Grimm MOW, Mett J, Stahlmann CP, et al. Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer's disease[J]. Front Aging Neurosci, 2013, 5: 98. doi: 10.3389/fnagi.2013.00098s
|
[59] |
Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease[J]. Front Aging Neurosci, 2014, 6: 93. doi: 10.1074/jbc.M801487200
|
[60] |
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners?[J]. Neuron, 2014, 81(4): 740–754. doi: 10.1016/j.neuron.2014.01.045
|
[61] |
Wang Y, Zhou H, Zhou X. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives[J]. Drug Discov Today, 2006, 11(19–20): 931–938. doi: 10.1016/j.drudis.2006.08.004
|
[62] |
Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181–1194. doi: 10.1007/s12035-014-9070-5
|
[63] |
Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier[J]. J Clini Invest, 2000, 106(12): 1489–1499. doi: 10.1172/JCI10498
|
[64] |
Xiang Y, Bu X, Liu Y, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer's disease[J]. Acta Neuropathol, 2015, 130(4): 487–499. doi: 10.1007/s00401-015-1477-1
|
[65] |
Matsuzaki K, Kato K, Yanagisawa K. Ganglioside-mediated assembly of amyloid β-protein: roles in Alzheimer's disease[J]. Prog Mol Biol Transl Sci, 2018, 156: 413–434. doi: 10.1016/bs.pmbts.2017.10.005
|
[66] |
Kanekiyo T, Liu C, Shinohara M, et al. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β[J]. J Neurosci, 2012, 32(46): 16458–16465. doi: 10.1523/JNEUROSCI.3987-12.2012
|
[67] |
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study[J]. J Neuropathol, 2005, 64(2): 113–122. doi: 10.1093/jnen/64.2.113
|
[68] |
Faborode OS, Dalle E, Mabandla MV. Trauma-like exposure alters neuronal apoptosis, Bin1, Fkbp5 and NR2B expression in an amyloid-beta (1–42) rat model of Alzheimer's disease[J]. Neurobiol Learn Mem, 2022, 190: 107611. doi: 10.1016/j.nlm.2022.107611
|
[69] |
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148–160. doi: 10.1038/s41583-019-0132-6
|
[70] |
Esselun C, Dieter F, Sus N, et al. Walnut oil reduces Aβ levels and increases neurite length in a cellular model of early Alzheimer disease[J]. Nutrients, 2022, 14(9): 1694. doi: 10.3390/nu14091694
|
[71] |
Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance[J]. Exp Neurol, 2012, 236(1): 1–5. doi: 10.1016/j.expneurol.2012.04.021
|
[72] |
Cai Z, Hussain MD, Yan L. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease[J]. Int J Neurosci, 2014, 124(5): 307–321. doi: 10.3109/00207454.2013.833510
|
[73] |
Felsky D, Roostaei T, Nho K, et al. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain[J]. Nat Commun, 2019, 10(1): 409. doi: 10.1038/s41467-018-08279-3
|
[74] |
Zhu M, Wang X, Schultzberg M, et al. Differential regulation of resolution in inflammation induced by amyloid-β42 and lipopolysaccharides in human microglia[J]. J Alzheimers Dis, 2015, 43(4): 1237–1250. doi: 10.3233/JAD-141233
|
[75] |
D'Errico P, Ziegler-Waldkirch S, Aires V, et al. Microglia contribute to the propagation of Aβ into unaffected brain tissue[J]. Nat Neurosci, 2022, 25(1): 20–25. doi: 10.1038/s41593-021-00951-0
|
[76] |
Pensalfini A, Kim S, Subbanna S, et al. Endosomal dysfunction induced by directly overactivating Rab5 recapitulates prodromal and neurodegenerative features of Alzheimer's disease[J]. Cell Rep, 2020, 33(8): 108420. doi: 10.1016/j.celrep.2020.108420
|
[77] |
Lee JH, Yang D, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques[J]. Nat Neurosci, 2022, 25(6): 688–701. doi: 10.1038/s41593-022-01084-8
|
[78] |
Fukumoto H, Rosene DL, Moss MB, et al. β-secretase activity increases with aging in human, monkey, and mouse brain[J]. Am J Pathol, 2004, 164(2): 719–725. doi: 10.1016/S0002-9440(10)63159-8
|
[79] |
Vassar R, Kovacs DM, Yan RQ, et al. The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential[J]. J Neurosci, 2009, 29(41): 12787–12794. doi: 10.1523/JNEUROSCI.3657-09.2009
|
[80] |
Willem M, Lammich S, Haass C. Function, regulation and therapeutic properties of β-secretase (BACE1)[J]. Semin Cell Dev Biol, 2009, 20(2): 175–182. doi: 10.1016/j.semcdb.2009.01.003
|
[81] |
Evin G, Barakat A, Masters CL. BACE: therapeutic target and potential biomarker for Alzheimer's disease[J]. Int J Biochem Cell Biol, 2010, 42(12): 1923–1926. doi: 10.1016/j.biocel.2010.08.017
|
[82] |
Huse JT, Pijak DS, Leslie GJ, et al. Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme: the Alzheimer's disease β-secretase[J]. J Biol Chem, 2000, 275(43): 33729–33737. doi: 10.1074/jbc.M004175200
|
[83] |
Yang L, Lindholm K, Yan R, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease[J]. Nat Med, 2003, 9(1): 3–4. doi: 10.1038/nm0103-3
|
[84] |
Kang EL, Biscaro B, Piazza F, et al. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus[J]. J Biol Chem, 2012, 287(51): 42867–42880. doi: 10.1074/jbc.M112.407072
|
[85] |
Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy[J]. J Neurosci, 2011, 31(21): 7817–30. doi: 10.1523/JNEUROSCI.6412-10.2011
|
[86] |
Maday S, Holzbaur E. Autophagosome assembly and cargo capture in the distal axon[J]. Autophagy, 2012, 8(5): 858–60. doi: 10.4161/auto.20055
|
[87] |
Maday S, Holzbaur EF. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway[J]. Dev Cell, 2014, 30(1): 71–85. doi: 10.1016/j.devcel.2014.06.001
|
[88] |
Cheng X, Zhou B, Lin M, et al. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes[J]. J Cell Biol, 2015, 209(3): 377–386. doi: 10.1083/jcb.201412046
|
[89] |
Maday S, Holzbaur ELF. Compartment-specific regulation of autophagy in primary neurons[J]. J Neurosci, 2016, 36(22): 5933–5545. doi: 10.1523/JNEUROSCI.4401-15.2016
|
[90] |
Feng T, Tammineni P, Agrawal C, et al. Autophagy-mediated Regulation of BACE1 protein trafficking and degradation[J]. J Biol Chem, 2017, 292(5): 1679–1690. doi: 10.1074/jbc.M116.766584
|
[91] |
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited[J]. Alzheimers Dement, 2016, 12(6): 733–748. doi: 10.1016/j.jalz.2016.01.012
|
[92] |
Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: time for a clinical trial?[J]. Sci Transl Med, 2019, 11(476): eaar4289. doi: 10.1126/scitranslmed.aar4289
|
[93] |
Talboom JS, Velazquez R, Oddo S. The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer's disease[J]. NPJ Aging Mech Dis, 2015, 1: 15008. doi: 10.1038/npjamd.2015.8
|
[94] |
Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD[J]. J Neurochem, 2015, 133(5): 739–749. doi: 10.1111/jnc.13037
|
[95] |
Tecalco-Cruz A, Pedraza-Chaverri J, Briones-Herrera A, et al. Protein degradation-associated mechanisms that are affected in Alzheimer´s disease[J]. Mol Cell Biochem, 2022, 477(3): 915–925. doi: 10.1007/s11010-021-04334-8
|
[96] |
Wu H, Lu M, Wang W, et al. Lamotrigine reduces β-site AβPP-cleaving enzyme 1 protein levels through induction of autophagy[J]. J Alzheimer's Dis, 2015, 46(4): 863–76. doi: 10.3233/JAD-143162
|
[97] |
Ordóñez-Gutiérrez L, Benito-Cuesta I, Abad JL, et al. Dihydroceramide desaturase 1 inhibitors reduce amyloid-β levels in primary neurons from an alzheimer's disease transgenic model[J]. Pharm Res, 2018, 35(3): 49. doi: 10.1007/s11095-017-2312-2
|
[98] |
Cai Z, Zhou Y, Liu Z, et al. Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of γ-secretase complex[J]. Neuropsychiatr Dis Treat, 2015, 11: 2091–2099. doi: 10.2147/NDT.S84755
|
[99] |
Caccamo A, Ferreira E, Branca C, et al. p62 improves AD-like pathology by increasing autophagy[J]. Mol Psychiatry, 2017, 22(6): 865–873. doi: 10.1038/mp.2016.139
|
[100] |
Di Meco A, Li J, Blass BE, et al. 12/15-Lipoxygenase inhibition reverses cognitive impairment, brain amyloidosis, and tau pathology by stimulating autophagy in aged triple transgenic mice[J]. Biol Psychiatry, 2017, 81(2): 92–100. doi: 10.1016/j.biopsych.2016.05.023
|
[101] |
Gali CC, Fanaee-Danesh E, Zandl-Lang M, et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice[J]. Mol Cell Neurosci, 2019, 99: 103390. doi: 10.1016/j.mcn.2019.103390
|
[102] |
Lee JA, Gao F. Regulation of Aβ pathology by beclin 1: a protective role for autophagy?[J]. J Clin Invest, 2008, 118(6): 2015–2018. doi: 10.1172/JCI35662
|
[103] |
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice[J]. J Clin Invest, 2008, 118(6): 2190–2199. doi: 10.1172/JCI33585
|
[104] |
Sasahara K, Morigaki K, Shinya K. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure[J]. Phys Chem Chem Phys, 2013, 15(23): 8929–8939. doi: 10.1039/c3cp44517h
|
[105] |
Seo BR, Lee SJ, Cho KS, et al. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells[J]. Neurobiol Aging, 2015, 36(12): 3228–3238. doi: 10.1016/j.neurobiolaging.2015.09.006
|
[106] |
Lafay-Chebassier C, Page G, Ingrand S, et al. P1-12 Modulation des voies mTOR, p70S6K et ERK du contrôle traductionnel par le peptide amyloïde Ab 1-42 dans des cellules de neuroblastomes humains[J]. Rev Neurol, 2005, 161(12): 88–89. doi: 10.1016/S0035-3787(05)85328-7
|
[107] |
Nilsson P, Loganathan K, Sekiguchi M, et al. Aβ secretion and plaque formation depend on autophagy[J]. Cell Rep, 2013, 5(1): 61–69. doi: 10.1016/j.celrep.2013.08.042
|
[108] |
Wang H, Zhang T, Kuerban B, et al. Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice[J]. Neurosci Bull, 2015, 31(4): 491–504. doi: 10.1007/s12264-015-1546-4
|
[109] |
Xue Z, Guo Y, Fang Y. Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells[J]. Neurosci Lett, 2016, 618: 50–57. doi: 10.1016/j.neulet.2016.02.044
|
[110] |
Wang B, Her G, Hu M, et al. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2017, 114(15): E3129–E3138. doi: 10.1073/pnas.1618804114
|
[111] |
Ramanathan A, Nelson AR, Sagare AP, et al. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1[J]. Front Aging Neurosci, 2015, 7: 136. doi: 10.3389/fnagi.2015.00136
|
[112] |
Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance[J]. Nat Neurosci, 2015, 18(7): 978–987. doi: 10.1038/nn.4025
|
[113] |
Chan Y, Chen W, Wan W, et al. Aβ1-42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd. 3 cells[J]. Exp Cell Res, 2018, 369(2): 266–274. doi: 10.1016/j.yexcr.2018.05.025
|
[114] |
Farr SA, Roesler E, Niehoff ML, et al. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer's disease[J]. J Alzheimer's Dis, 2019, 68(4): 1699–1710. doi: 10.3233/JAD-181240
|
[115] |
Luo R, Su L, Li G, et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model[J]. Autophagy, 2020, 16(1): 52–69. doi: 10.1080/15548627.2019.1596488
|
[116] |
Ozcelik S, Fraser G, Castets P, et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice[J]. PLoS One, 2013, 8(5): e62459. doi: 10.1371/journal.pone.0062459
|
[117] |
Song J, Malampati S, Zeng Y, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer's disease models[J]. Aging Cell, 2020, 19(2): e13069. doi: 10.1111/acel.13069
|
[118] |
Zhang W, Wang J, Yang C. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease[J]. Autophagy, 2022, 18(7): 1740–1742. doi: 10.1080/15548627.2022.2046437
|
[119] |
Yang C, Zhang W, Dong X, et al. A natural product solution to aging and aging-associated diseases[J]. Pharmacol Ther, 2020, 216: 107673. doi: 10.1016/j.pharmthera.2020.107673
|
[120] |
Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice[J]. Brain Behav Immun, 2018, 69: 351–363. doi: 10.1016/j.bbi.2017.12.009
|
[121] |
Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism[J]. J Biol Chem, 2010, 285(12): 9100–9113. doi: 10.1074/jbc.M109.060061
|
[122] |
Drygalski K, Fereniec E, Koryciński K, et al. Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials[J]. Exp Gerontol, 2018, 113: 36–47. doi: 10.1016/j.exger.2018.09.019
|
[123] |
Kong W, Vernieri C, Foiani M, et al. Berberine in the treatment of metabolism-related chronic diseases: a drug cloud (dCloud) effect to target multifactorial disorders[J]. Pharmacol Ther, 2020, 209: 107496. doi: 10.1016/j.pharmthera.2020.107496
|
[124] |
Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes, 2006, 55(8): 2256–2264. doi: 10.2337/db06-0006
|
[125] |
Huang M, Jiang X, Liang Y, et al. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease[J]. Exp Gerontol, 2017, 91: 25–33. doi: 10.1016/j.exger.2017.02.004
|
[126] |
Li J, Kim S, Blenis J. Rapamycin: one drug, many effects[J]. Cell Metab, 2014, 19(3): 373–379. doi: 10.1016/j.cmet.2014.01.001
|
[127] |
Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease[J]. PLoS One, 2010, 5(4): e9979. doi: 10.1371/journal.pone.0009979
|
[128] |
Majumder S, Richardson A, Strong R, et al. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits[J]. PLoS One, 2011, 6(9): e25416. doi: 10.1371/journal.pone.0025416
|
[129] |
Cassano T, Magini A, Giovagnoli S, et al. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer's disease[J]. Exp Neurol, 2019, 311: 88–105. doi: 10.1016/j.expneurol.2018.09.011
|
[130] |
Jiang T, Yu J, Zhu X, et al. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer's disease[J]. Pharmacol Res, 2014, 81: 54–63. doi: 10.1016/j.phrs.2014.02.008
|
[131] |
Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis[J]. Science, 2011, 332(6036): 1429–1433. doi: 10.1126/science.1204592
|
[132] |
Xiao Q, Yan P, Ma X, et al. Neuronal-targeted TFEB accelerates Lysosomal degradation of APP, reducing Aβ generation and Amyloid plaque pathogenesis[J]. J Neurosci, 2015, 35(35): 12137–12151. doi: 10.1523/JNEUROSCI.0705-15.2015
|
[133] |
Martini-Stoica H, Xu Y, Ballabio A, et al. The Autophagy-Lysosomal pathway in Neurodegeneration: a TFEB perspective[J]. Trends Neurosci, 2016, 39(4): 221–234. doi: 10.1016/j.tins.2016.02.002
|
[134] |
Song J, Sun Y, Peluso I, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition[J]. Autophagy, 2016, 12(8): 1372–1389. doi: 10.1080/15548627.2016.1179404
|
[135] |
Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1[J]. Nat Cell Biol, 2016, 18(10): 1065–1077. doi: 10.1038/ncb3407
|
[136] |
Koenig AM, Mechanic-Hamilton D, Xie S, et al. Effects of the insulin sensitizer Metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study[J]. Alzheimer Dis Assoc Disord, 2017, 31(2): 107–113. doi: 10.1097/WAD.0000000000000202
|
[137] |
Luchsinger JA, Perez T, Chang H, et al. Metformin in Amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial[J]. J Alzheimer's Dis, 2016, 51(2): 501–514. doi: 10.3233/JAD-150493
|
[138] |
Forlenza OV, Radanovic M, Talib LL, et al. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial[J]. Br J Psychiatry, 2019, 215(5): 668–674. doi: 10.1192/bjp.2019.76
|
[139] |
Devanand DP, Crocco E, Forester BP, et al. Low dose lithium treatment of Behavioral complications in Alzheimer's disease: Lit-AD randomized clinical trial[J]. Am J Geriatr Psychiatry, 2022, 30(1): 32–42. doi: 10.1016/j.jagp.2021.04.014
|
[140] |
Devanand DP, Strickler JG, Huey ED, et al. Lithium treatment for agitation in Alzheimer's disease (Lit-AD): clinical rationale and study design[J]. Contemp Clin Trials, 2018, 71: 33–39. doi: 10.1016/j.cct.2018.05.019
|
[141] |
Steele JW, Lachenmayer ML, Ju S, et al. Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse model[J]. Mol Psychiatry, 2013, 18(8): 889–897. doi: 10.1038/mp.2012.106
|
[142] |
Son SM, Shin HJ, Byun J, et al. Metformin facilitates amyloid-β generation by β- and γ-Secretases via Autophagy activation[J]. J Alzheimer's Dis, 2016, 51(4): 1197–1208. doi: 10.3233/JAD-151200
|
[143] |
Du J, Liang Y, Xu F, et al. Trehalose rescues Alzheimer's disease phenotypes in APP/PS1 transgenic mice[J]. J Pharmacy Pharmacol, 2013, 65(12): 1753–1756. doi: 10.1111/jphp.12108
|
[144] |
Lonskaya I, Hebron ML, Selby ST, et al. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer's disease models[J]. Neuroscience, 2015, 304: 316–327. doi: 10.1016/j.neuroscience.2015.07.070
|
[145] |
Chen Y, Chen Y, Liang Y, et al. Berberine mitigates cognitive decline in an Alzheimer's disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance[J]. Biomed Pharmacother, 2020, 121: 109670. doi: 10.1016/j.biopha.2019.109670
|
[146] |
Pierce A, Podlutskaya N, Halloran JJ, et al. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease[J]. J Neurochem, 2013, 124(6): 880–893. doi: 10.1111/jnc.12080
|
[147] |
Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments[J]. J Biol Chem, 2010, 285(17): 13107–13120. doi: 10.1074/jbc.M110.100420
|
[148] |
Frederick C, Ando K, Leroy K, et al. Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice[J]. J Alzheimer's Dis, 2015, 44(4): 1145–1156. doi: 10.3233/JAD-142097
|
[149] |
Li L, Zhang S, Zhang X, et al. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer's disease[J]. Curr Alzheimer Res, 2013, 10(4): 433–441. doi: 10.2174/1567205011310040008
|
[150] |
Umeda T, Ono K, Sakai A, et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers[J]. Brain, 2016, 139(5): 1568–1586. doi: 10.1093/brain/aww042
|
[151] |
Chandra S, Jana M, Pahan K. Aspirin induces Lysosomal biogenesis and attenuates Amyloid plaque pathology in a mouse model of Alzheimer's disease via PPARα[J]. J Neurosci, 2018, 38(30): 6682–6699. doi: 10.1523/JNEUROSCI.0054-18.2018
|
[152] |
Chandra S, Roy A, Jana M, et al. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer's disease mouse model[J]. Neurobiol Dis, 2019, 124: 379–395. doi: 10.1016/j.nbd.2018.12.007
|
[153] |
Meng X, Luo Y, Liang T, et al. Gypenoside XVII enhances Lysosome biogenesis and Autophagy flux and accelerates Autophagic clearance of Amyloid-β through TFEB activation[J]. J Alzheimer's Dis, 2016, 52(3): 1135–1150. doi: 10.3233/JAD-160096
|
[154] |
Zhang X, Heng X, Li T, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer's disease transgenic mouse model[J]. J Alzheimer's Dis, 2011, 24(4): 739–749. doi: 10.3233/JAD-2011-101875
|
[155] |
ClinicalTrials.gov. Effect of insulin sensitizer metformin on ad biomarkers[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT01965756.
|
[156] |
ClinicalTrials.gov. Metformin in Alzheimer's dementia prevention (MAP)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04098666.
|
[157] |
ClinicalTrials.gov. Rapamycin–Effects on Alzheimer's and cognitive health (REACH)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04629495.
|
[158] |
ClinicalTrials.gov. Cognition, Age, and RaPamycin Effectiveness-DownregulatIon of the mTOR-pathway (CARPE DIEM)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04200911.
|
[159] |
Aprahamian I, Santos F, dos Santos B, et al. Long-term, low-dose lithium treatment does not impair renal function in the elderly: a 2-year randomized, placebo-controlled trial followed by single-blind extension[J]. J Clin Psychiatry, 2014, 75(7): e672–e678. doi: 10.4088/JCP.13m08741
|
[160] |
Forlenza O, Diniz B, Radanovic M, et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial[J]. Br J Psychiatry, 2011, 198(5): 351–356. doi: 10.1192/bjp.bp.110.080044
|
[161] |
ClinicalTrials.gov. Lithium as a treatment to prevent impairment of cognition in elders (LATTICE) [EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT03185208.
|
[162] |
ClinicalTrials.gov. Effect of lithium and divalproex in Alzheimer's disease[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT00088387.
|
[163] |
ClinicalTrials.gov. A phase 3 efficacy study of dimebon in patients with moderate to severe Alzheimer's disease[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT00912288.
|
[164] |
Doody R, Gavrilova S, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer's disease: a randomised, double-blind, placebo-controlled study[J]. Lancet, 2008, 372(9634): 207–215. doi: 10.1016/S0140-6736(08)61074-0
|
[165] |
ClinicalTrials.gov. A Phase 3 study to evaluate the safety and tolerability of dimebon patients with mild to moderate Alzheimer's disease[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT00838110.
|
[166] |
Zhu C, Grossman H, Neugroschl J, et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer's disease: A pilot study[J]. Alzheimers Dement (N Y), 2018, 4: 609–616. doi: 10.1016/j.trci.2018.09.009
|
[167] |
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease[J]. J Neuroinflammation, 2017, 14(1): 1. doi: 10.1186/s12974-016-0779-0
|
[168] |
Stites S, Turner R, Gill J, et al. Research Attitudes Questionnaire scores predict Alzheimer's disease clinical trial dropout[J]. Clin trials, 2021, 18(2): 237–244. doi: 10.1177/1740774520982315
|
[169] |
Pagan F, Hebron M, Valadez E, et al. Nilotinib effects in Parkinson's disease and Dementia with Lewy bodies[J]. J Parkinsons Dis, 2016, 6(3): 503–517. doi: 10.3233/JPD-160867
|
[170] |
ClinicalTrials.gov. Mycose administration for healing Alzheimer Neuropathy (MASHIANE) (MASHIANE)[EB/OL]. [2022-12-17]. https://clinicaltrials.gov/ct2/show/NCT04663854.
|