• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Natalia V. Naryzhnaya, Leonid N. Maslov, Sergey V. Popov, Alexandr V. Mukhomezyanov, Vyacheslav V. Ryabov, Boris K. Kurbatov, Alexandra E. Gombozhapova, Nirmal Singh, Feng Fu, Jian-Ming Pei, Sergey V. Logvinov. Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220123
Citation: Natalia V. Naryzhnaya, Leonid N. Maslov, Sergey V. Popov, Alexandr V. Mukhomezyanov, Vyacheslav V. Ryabov, Boris K. Kurbatov, Alexandra E. Gombozhapova, Nirmal Singh, Feng Fu, Jian-Ming Pei, Sergey V. Logvinov. Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220123

Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy

doi: 10.7555/JBR.36.20220123
More Information
  • Corresponding author: Leonid N. Maslov, Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kyevskaya 111A, 634012 Tomsk, Russia. E-mail: maslov@cardio-tomsk.ru
  • Received: 2022-05-22
  • Revised: 2022-06-23
  • Accepted: 2022-07-06
  • Published: 2022-08-10
  • Acute myocardial infarction (AMI) is one of the main reasons of disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanism(s) of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, mitigated cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and traditional Chinese herbal medicines.

     

  • CLC number: R542.2,, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association[J]. Circulation, 2015, 131(4): e29–e322. doi: 10.1161/CIR.0000000000000152
    [2]
    Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association[J]. Circulation, 2018, 137(12): e67–e492. doi: 10.1161/CIR.0000000000000558
    [3]
    De Geest B, Mishra M. Role of high-density lipoproteins in cardioprotection and in reverse remodeling: therapeutic implications[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(11): 159022. doi: 10.1016/j.bbalip.2021.159022
    [4]
    D'Elia N, D'hooge J, Marwick TH. Association between myocardial mechanics and ischemic LV remodeling[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1430–1443. doi: 10.1016/j.jcmg.2015.10.005
    [5]
    van der Bijl P, Abou R, Goedemans L, et al. Left ventricular post-infarct remodeling: implications for systolic function improvement and outcomes in the modern Era[J]. JACC Heart Fail, 2020, 8(2): 131–140. doi: 10.1016/j.jchf.2019.08.014
    [6]
    Yang C, Shen Y, Lu L, et al. Insulin resistance and dysglycemia are associated with left ventricular remodeling after myocardial infarction in non-diabetic patients[J]. Cardiovasc Diabetol, 2019, 18(1): 100. doi: 10.1186/s12933-019-0904-3
    [7]
    Ryabov V, Gombozhapova A, Rogovskaya Y, et al. Cardiac CD68+ and stabilin-1+ macrophages in wound healing following myocardial infarction: from experiment to clinic[J]. Immunobiology, 2018, 223(4–5): 413–421,doi: 10.1016/j.imbio.2017.11.006.
    [8]
    Weil BR, Neelamegham S. Selectins and immune cells in acute myocardial infarction and post-infarction ventricular remodeling: pathophysiology and novel treatments[J]. Front Immunol, 2019, 10: 300. doi: 10.3389/fimmu.2019.00300
    [9]
    Toldo S, Mezzaroma E, van Tassell BW, et al. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse[J]. Exp Physiol, 2013, 98(3): 734–745. doi: 10.1113/expphysiol.2012.069831
    [10]
    Popov SV, Maslov LN, Naryzhnaya NV, et al. The role of pyroptosis in ischemic and reperfusion injury of the heart[J]. J Cardiovasc Pharmacol Ther, 2021, 26(6): 562–574. doi: 10.1177/10742484211027405
    [11]
    Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477–489. doi: 10.1038/s41577-019-0165-0
    [12]
    Martinon F, Burns K, Tschopp J. A molecular platform triggering activation of inflammatory caspases and processing of proIL-β[J]. Mol Cell, 2002, 10(2): 417–426. doi: 10.1016/s1097-2765(02)00599-3
    [13]
    Poznyak AV, Melnichenko AA, Wetzker R, et al. NLPR3 inflammasomes and their significance for atherosclerosis[J]. Biomedicines, 2020, 8(7): 205. doi: 10.3390/biomedicines8070205
    [14]
    Sebastian-Valverde M, Pasinetti GM. The NLRP3 inflammasome as a critical actor in the inflammaging process[J]. Cells, 2020, 9(6): 1552. doi: 10.3390/cells9061552
    [15]
    Silvis MJM, Demkes EJ, Fiolet ATL, et al. Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction[J]. J Cardiovasc Trans Res, 2021, 14(1): 23–34. doi: 10.1007/s12265-020-10049-w
    [16]
    Wang S, Zhu H, Li R, et al. DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury[J]. Sci Signal, 2022, 15(725): eabh1121. doi: 10.1126/scisignal.abh1121
    [17]
    He W, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25(12): 1285–1298. doi: 10.1038/cr.2015.139
    [18]
    Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660–665. doi: 10.1038/nature15514
    [19]
    Wang Q, Wu J, Zeng Y, et al. Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease[J]. Clin Chim Acta, 2020, 510: 62–72. doi: 10.1016/j.cca.2020.06.044
    [20]
    Mezzaroma E, Toldo S, Farkas D, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19725–19730. doi: 10.1073/pnas.1108586108
    [21]
    Liu A, Gao X, Zhang Q, et al. Cathepsin B inhibition attenuates cardiac dysfunction and remodeling following myocardial infarction by inhibiting the NLRP3 pathway[J]. Mol Med Rep, 2013, 8(2): 361–366. doi: 10.3892/mmr.2013.1507
    [22]
    Liu W, Zhang X, Zhao M, et al. Activation in M1 but not M2 macrophages contributes to cardiac remodeling after myocardial infarction in rats: a critical role of the calcium sensing receptor/NRLP3 inflammasome[J]. Cell Physiol Biochem, 2015, 35(6): 2483–2500. doi: 10.1159/000374048
    [23]
    Sano S, Oshima K, Wang Y, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome[J]. J Am Coll Cardiol, 2018, 71(8): 875–886. doi: 10.1016/j.jacc.2017.12.037
    [24]
    Gao R, Shi H, Chang S, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction[J]. Int Immunopharmacol, 2019, 74: 105575. doi: 10.1016/j.intimp.2019.04.022
    [25]
    Li X, Bian Y, Pang P, et al. Inhibition of Dectin-1 in mice ameliorates cardiac remodeling by suppressing NF-κB/NLRP3 signaling after myocardial infarction[J]. Int Immunopharmacol, 2020, 80: 106116. doi: 10.1016/j.intimp.2019.106116
    [26]
    Gao R, Li X, Xiang H, et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice[J]. Int Immunopharmacol, 2021, 90: 107133. doi: 10.1016/j.intimp.2020.107133
    [27]
    Wei Z, Fei Y, Wang Q, et al. Loss of Camk2n1 aggravates cardiac remodeling and malignant ventricular arrhythmia after myocardial infarction in mice via NLRP3 inflammasome activation[J]. Free Radic Biol Med, 2021, 167: 243–257. doi: 10.1016/j.freeradbiomed.2021.03.014
    [28]
    Aliaga J, Bonaventura A, Mezzaroma E, et al. Preservation of contractile reserve and diastolic function by inhibiting the NLRP3 inflammasome with OLT1177® (Dapansutrile) in a mouse model of severe ischemic cardiomyopathy due to non-reperfused anterior wall myocardial infarction[J]. Molecules, 2021, 26(12): 3534. doi: 10.3390/molecules26123534
    [29]
    Zhang X, Zhao D, Feng J, et al. LuQi Formula regulates NLRP3 inflammasome to relieve myocardial-infarction-induced cardiac remodeling in mice[J]. Evid Based Complement Alternat Med, 2021, 2021: 5518083. doi: 10.1155/2021/5518083
    [30]
    Shen J, Fan Z, Sun G, et al. Sacubitril/valsartan (LCZ696) reduces myocardial injury following myocardial infarction by inhibiting NLRP3-induced pyroptosis via the TAK1/JNK signaling pathway[J]. Mol Med Rep, 2021, 24(3): 676. doi: 10.3892/mmr.2021.12315
    [31]
    Wei Q, Liu H, Liu M, et al. Ramipril attenuates left ventricular remodeling by regulating the expression of activin A-follistatin in a rat model of heart failure[J]. Sci Rep, 2016, 6: 33677. doi: 10.1038/srep33677
    [32]
    von Lueder TG, Wang BH, Kompa AR, et al. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy[J]. Circ Heart Fail, 2015, 8(1): 71–78. doi: 10.1161/CIRCHEARTFAILURE.114.001785
    [33]
    Kim HS, No CW, Goo SH, et al. An angiotensin receptor blocker prevents arrhythmogenic left atrial remodeling in a rat post myocardial infarction induced heart failure model[J]. J Korean Med Sci, 2013, 28(5): 700–708. doi: 10.3346/jkms.2013.28.5.700
    [34]
    Nie C, Zou R, Pan S, et al. Hydrogen gas inhalation ameliorates cardiac remodelling and fibrosis by regulating NLRP3 inflammasome in myocardial infarction rats[J]. J Cell Mol Med, 2021, 25(18): 8997–9010. doi: 10.1111/jcmm.16863
    [35]
    Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One, 2014, 9(8): e104771. doi: 10.1371/journal.pone.0104771
    [36]
    Birnbaum Y, Tran D, Bajaj M, et al. DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome[J]. Basic Res Cardiol, 2019, 114(5): 35. doi: 10.1007/s00395-019-0743-0
    [37]
    Chen H, Tran D, Yang HC, et al. Dapagliflozin and ticagrelor have additive effects on the attenuation of the activation of the NLRP3 inflammasome and the progression of diabetic cardiomyopathy: an AMPK-mTOR interplay[J]. Cardiovasc Drugs Ther, 2020, 34(4): 443–461. doi: 10.1007/s10557-020-06978-y
    [38]
    Wu X, Liu Y, Tu D, et al. Role of NLRP3-inflammasome/caspase-1/galectin-3 pathway on atrial remodeling in diabetic rabbits[J]. J Cardiovasc Trans Res, 2020, 13(5): 731–740. doi: 10.1007/s12265-020-09965-8
    [39]
    Elmadbouh I, Singla DK. BMP-7 attenuates inflammation-induced pyroptosis and improves cardiac repair in diabetic cardiomyopathy[J]. Cells, 2021, 10(10): 2640. doi: 10.3390/cells10102640
    [40]
    Mao S, Chen P, Pan W, et al. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation[J]. ESC Heart Fail, 2022, 9(1): 303–317. doi: 10.1002/ehf2.13754
    [41]
    Kar S, Shahshahan HR, Hackfort BT, et al. Exercise training promotes cardiac hydrogen sulfide biosynthesis and mitigates pyroptosis to prevent high-fat diet-induced diabetic cardiomyopathy[J]. Antioxidants (Basel), 2019, 8(12): 638. doi: 10.3390/antiox8120638
    [42]
    Logvinov SV, Naryzhnaya NV, Kurbatov BK, et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: the involvement of connective tissue growth factors and fibronectin[J]. Exp Gerontol, 2021, 154: 111543. doi: 10.1016/j.exger.2021.111543
    [43]
    Zhao P, Zhou W, Zhang Y, et al. Aminooxyacetic acid attenuates post-infarct cardiac dysfunction by balancing macrophage polarization through modulating macrophage metabolism in mice[J]. J Cell Mol Med, 2020, 24(4): 2593–2609. doi: 10.1111/jcmm.14972
    [44]
    Sokolova M, Sjaastad I, Louwe MC, et al. NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity[J]. Front Immunol, 2019, 10: 1621. doi: 10.3389/fimmu.2019.01621
    [45]
    Chen X, Li H, Wang K, et al. Aerobic exercise ameliorates myocardial inflammation, fibrosis and apoptosis in high-fat-diet rats by inhibiting P2X7 purinergic receptors[J]. Front Physiol, 2019, 10: 1286. doi: 10.3389/fphys.2019.01286
    [46]
    Chen L, Yin Z, Qin X, et al. CD74 ablation rescues type 2 diabetes mellitus-induced cardiac remodeling and contractile dysfunction through pyroptosis-evoked regulation of ferroptosis[J]. Pharmacol Res, 2022, 176: 106086. doi: 10.1016/j.phrs.2022.106086
    [47]
    Yang M, Zheng J, Miao Y, et al. Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis[J]. Arterioscler Thromb Vasc Biol, 2012, 32(7): 1675–1686. doi: 10.1161/ATVBAHA.112.248732
    [48]
    Gan W, Ren J, Li T, et al. The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(1): 1–10. doi: 10.1016/j.bbadis.2017.10.001
    [49]
    Wang J, Deng B, Liu J, et al. Xinyang Tablet inhibits MLK3-mediated pyroptosis to attenuate inflammation and cardiac dysfunction in pressure overload[J]. J Ethnopharmacol, 2021, 274: 114078. doi: 10.1016/j.jep.2021.114078
    [50]
    Ma S, Feng J, Lin X, et al. Nicotinamide riboside alleviates cardiac dysfunction and remodeling in pressure overload cardiac hypertrophy[J]. Oxid Med Cell Longev, 2021, 2021: 5546867. doi: 10.1155/2021/5546867
    [51]
    Zhao M, Zhang J, Xu Y, et al. Selective inhibition of NLRP3 inflammasome reverses pressure overload-induced pathological cardiac remodeling by attenuating hypertrophy, fibrosis, and inflammation[J]. Int Immunopharmacol, 2021, 99: 108046. doi: 10.1016/j.intimp.2021.108046
    [52]
    Willeford A, Suetomi T, Nickle A, et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis[J]. JCI Insight, 2018, 3(12): e97054. doi: 10.1172/jci.insight.97054
    [53]
    Heijman J, Muna AP, Veleva T, et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation[J]. Circ Res, 2020, 127(8): 1036–1055. doi: 10.1161/CIRCRESAHA.120.316710
    [54]
    Miller SA, Kolpakov MA, Guo X, et al. Intracardiac administration of neutrophil protease cathepsin G activates noncanonical inflammasome pathway and promotes inflammation and pathological remodeling in non-injured heart[J]. J Mol Cell Cardiol, 2019, 134: 29–39. doi: 10.1016/j.yjmcc.2019.06.016
    [55]
    Li X, Zhu Q, Wang Q, et al. Protection of sacubitril/valsartan against pathological cardiac remodeling by inhibiting the NLRP3 inflammasome after relief of pressure overload in mice[J]. Cardiovasc Drugs Ther, 2020, 34(5): 629–640. doi: 10.1007/s10557-020-06995-x
    [56]
    Wang J, Deng B, Liu Q, et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J]. Cell Death Dis, 2020, 11(7): 574. doi: 10.1038/s41419-020-02777-3
    [57]
    Zhou J, Tian G, Quan Y, et al. Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1β pathway[J]. Oxid Med Cell Longev, 2020, 2020: 7956274. doi: 10.1155/2020/7956274
    [58]
    Lu B, Xie J, Fu D, et al. Huoxue Qianyang Qutan recipe attenuates cardiac fibrosis by inhibiting the NLRP3 inflammasome signalling pathway in obese hypertensive rats[J]. Pharm Biol, 2021, 59(1): 1043–1055. doi: 10.1080/13880209.2021.1953541
    [59]
    Lv S, Zeng Z, Gan W, et al. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation[J]. Acta Pharmacol Sin, 2021, 42(12): 2016–2032. doi: 10.1038/s41401-021-00703-7
    [60]
    Li F, Zhang H, Yang L, et al. NLRP3 deficiency accelerates pressure overload-induced cardiac remodeling via increased TLR4 expression[J]. J Mol Med (Berl), 2018, 96(11): 1189–1202. doi: 10.1007/s00109-018-1691-0
    [61]
    Gao Y, Tong G, Zhang X, et al. Interleukin-18 levels on admission are associated with mid-term adverse clinical events in patients with ST-segment elevation acute myocardial infarction undergoing percutaneous coronary intervention[J]. Int Heart J, 2010, 51(2): 75–81. doi: 10.1536/ihj.51.75
    [62]
    El-Mesallamy HO, Hamdy NM, El-Etriby AK, et al. Plasma granzyme B in ST elevation myocardial infarction versus non-ST elevation acute coronary syndrome: comparisons with IL-18 and fractalkine[J]. Mediators Inflamm, 2013, 2013: 343268. doi: 10.1155/2013/343268
    [63]
    Hartford M, Wiklund O, Hultén LM, et al. Interleukin-18 as a predictor of future events in patients with acute coronary syndromes[J]. Arterioscler Thromb Vasc Biol, 2010, 30(10): 2039–2046. doi: 10.1161/ATVBAHA.109.202697
    [64]
    Ji Q, Zeng Q, Huang Y, et al. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome[J]. Mediators Inflamm, 2014, 2014: 165742. doi: 10.1155/2014/165742
    [65]
    Xie S, Chen Y, Zhang H, et al. Interleukin 18 and extracellular matrix metalloproteinase inducer cross-regulation: implications in acute myocardial infarction[J]. Transl Res, 2015, 165(3): 387–395. doi: 10.1016/j.trsl.2014.09.001
    [66]
    Åkerblom A, James SK, Lakic TG, et al. Interleukin-18 in patients with acute coronary syndromes[J]. Clin Cardiol, 2019, 42(12): 1202–1209. doi: 10.1002/clc.23274
    [67]
    Wang X, Cai X, Chen L, et al. The evaluation of plasma and leukocytic IL-37 expression in early inflammation in patients with acute ST-segment elevation myocardial infarction after PCI[J]. Mediators Inflamm, 2015, 2015: 626934. doi: 10.1155/2015/626934
    [68]
    Pudil R, Pidrman V, Krejsek J, et al. Cytokines and adhesion molecules in the course of acute myocardial infarction[J]. Clin Chim Acta, 1999, 280(1–2): 127–134,doi: 10.1016/s0009-8981(98)00179-x.
    [69]
    Ørn S, Ueland T, Manhenke C, et al. Increased interleukin-1β levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention[J]. J Intern Med, 2012, 272(3): 267–276. doi: 10.1111/j.1365-2796.2012.02517.x
    [70]
    Hermansson C, Lundqvist A, Wasslavik C, et al. Reduced expression of NLRP3 and MEFV in human ischemic heart tissue[J]. Biochem Biophys Res Commun, 2013, 430(1): 425–428. doi: 10.1016/j.bbrc.2012.11.070
    [71]
    Raleigh JV, Mauro AG, Devarakonda T, et al. Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism[J]. Cardiovasc Res, 2017, 113(6): 609–619. doi: 10.1093/cvr/cvw246
    [72]
    Lei Q, Yi T, Chen C. NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction[J]. Med Sci Monit, 2018, 24: 6044–6052. doi: 10.12659/MSM.908529
    [73]
    Yu Y, Jin L, Zhuang Y, et al. Cardioprotective effect of rosuvastatin against isoproterenol-induced myocardial infarction injury in rats[J]. Int J Mol Med, 2018, 41(6): 3509–3516. doi: 10.3892/ijmm.2018.3572
    [74]
    Euler DE, Hughes PJ, Scanlon PJ. Comparison of the effects of acute and chronic beta-blockade on infarct size in the dog after circumflex occlusion[J]. Cardiovasc Drugs Ther, 1988, 2(2): 231–238. doi: 10.1007/BF00051239
    [75]
    Yu W, Jin G, Zhang J, et al. Selective activation of cannabinoid receptor 2 attenuates myocardial infarction via suppressing NLRP3 inflammasome[J]. Inflammation, 2019, 42(3): 904–914. doi: 10.1007/s10753-018-0945-x
    [76]
    Cui Q, Wang J, Liu X, et al. Knockout of PTEN improves cardiac function and inhibits NLRP3-mediated cardiomyocyte pyroptosis in rats with myocardial ischemia-reperfusion[J]. Chin J Cell Mol Immunol (in Chinese), 2020, 36(3): 205–211.
    [77]
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor[J]. Nat Rev Mol Cell Biol, 2012, 13(5): 283–296. doi: 10.1038/nrm3330
    [78]
    Han Y, Sun W, Ren D, et al. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion[J]. Redox Biol, 2020, 34: 101538. doi: 10.1016/j.redox.2020.101538
    [79]
    Yao L, Song J, Meng X, et al. Periostin aggravates NLRP3 inflammasome-mediated pyroptosis in myocardial ischemia-reperfusion injury[J]. Mol Cell Probes, 2020, 53: 101596. doi: 10.1016/j.mcp.2020.101596
    [80]
    Climent M, Viggiani G, Chen Y, et al. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases[J]. Int J Mol Sci, 2020, 21(12): 4370. doi: 10.3390/ijms21124370
    [81]
    Lou Y, Wang S, Qu J, et al. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis[J]. Int J Clin Exp Pathol, 2018, 11(7): 3222–3235.
    [82]
    Ding S, Liu D, Wang L, et al. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway[J]. J Pharmacol Exp Ther, 2020, 372(1): 128–135. doi: 10.1124/jpet.119.256982
    [83]
    Lin J, Lin H, Ma C, et al. MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FoxO3[J]. Med Sci Monit, 2019, 25: 8733–8743. doi: 10.12659/MSM.918410
    [84]
    Zhou Y, Li K, Liu L, et al. MicroRNA-132 promotes oxidative stress-induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia-reperfusion injury[J]. Int J Mol Med, 2020, 45(6): 1942–1950. doi: 10.3892/ijmm.2020.4557
    [85]
    Dai Y, Wang S, Chang S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol, 2020, 142: 65–79. doi: 10.1016/j.yjmcc.2020.02.007
    [86]
    Wei X, Peng H, Deng M, et al. MiR-703 protects against hypoxia/reoxygenation-induced cardiomyocyte injury via inhibiting the NLRP3/caspase-1-mediated pyroptosis[J]. J Bioenerg Biomembr, 2020, 52(3): 155–164. doi: 10.1007/s10863-020-09832-w
    [87]
    Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology[J]. Physiol Rev, 2003, 83(4): 1113–1151. doi: 10.1152/physrev.00009.2003
    [88]
    Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning[J]. Circ Res, 2015, 116(4): 674–699. doi: 10.1161/CIRCRESAHA.116.305348
    [89]
    Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12): 773–789. doi: 10.1038/s41569-020-0403-y
    [90]
    Gou X, Xu D, Li F, et al. Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies[J]. J Physiol Biochem, 2021, 77(4): 511–529. doi: 10.1007/s13105-021-00817-w
    [91]
    Shi J, Tang M, Zhou S, et al. Programmed cell death pathways in the pathogenesis of idiopathic inflammatory myopathies[J]. Front Immunol, 2021, 12: 783616. doi: 10.3389/fimmu.2021.783616
    [92]
    Woo Y, Lee HJ, Jung YM, et al. Regulated necrotic cell death in alternative tumor therapeutic strategies[J]. Cells, 2020, 9(12): 2709. doi: 10.3390/cells9122709
    [93]
    Gong T, Liu L, Jiang W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95–112. doi: 10.1038/s41577-019-0215-7
    [94]
    Zhang X, Qu H, Yang T, et al. Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: current knowledge and clinical significance[J]. Biomed Pharmacother, 2021, 143: 112219. doi: 10.1016/j.biopha.2021.112219
    [95]
    Song Z, Gong Q, Guo J. Pyroptosis: mechanisms and links with fibrosis[J]. Cells, 2021, 10(12): 3509. doi: 10.3390/cells10123509
    [96]
    Wang C, Zhu L, Yuan W, et al. Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner[J]. J Cell Mol Med, 2020, 24(12): 6670–6679. doi: 10.1111/jcmm.15318
    [97]
    Wang X, Pan J, Liu H, et al. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model[J]. Life Sci, 2019, 221: 249–258. doi: 10.1016/j.lfs.2019.02.035
    [98]
    Shen S, He F, Cheng C, et al. Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway[J]. Biomed Pharmacother, 2021, 133: 110990. doi: 10.1016/j.biopha.2020.110990
    [99]
    Wu A, Sun W, Mou F. lncRNA-MALAT1 promotes high glucose-induced H9C2 cardiomyocyte pyroptosis by downregulating miR-141-3p expression[J]. Mol Med Rep, 2021, 23(4): 259. doi: 10.3892/mmr.2021.11898
    [100]
    Wang X, Lian Z, Ge Y, et al. TRIM25 rescues against doxorubicin-Induced pyroptosis through promoting NLRP1 ubiquitination[J]. Cardiovasc Toxicol, 2021, 21(10): 859–868. doi: 10.1007/s12012-021-09676-9
    [101]
    Li Y, Wang Y, Guo H, et al. IRF2 contributes to myocardial infarction via regulation of GSDMD induced pyroptosis[J]. Mol Med Rep, 2022, 25(2): 40. doi: 10.3892/mmr.2021.12556
    [102]
    Yang F, Qin Y, Wang Y, et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy[J]. Int J Biol Sci, 2019, 15(5): 1010–1019. doi: 10.7150/ijbs.29680
    [103]
    Liu J, Li Y, Yang M, et al. SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis[J]. Arch Biochem Biophys, 2020, 695: 108611. doi: 10.1016/j.abb.2020.108611
    [104]
    Huang C, Andres AM, Ratliff EP, et al. Preconditioning involves selective mitophagy mediated by parkin and p62/SQSTM1[J]. PLoS One, 2011, 6(6): e20975. doi: 10.1371/journal.pone.0020975
    [105]
    Sun W, Lu H, Dong S, et al. Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury[J]. Cell Commun Signal, 2021, 19(1): 107. doi: 10.1186/s12964-021-00786-z
    [106]
    Wang Y, Jasper H, Toan S, et al. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury[J]. Redox Biol, 2021, 45: 102049. doi: 10.1016/j.redox.2021.102049
    [107]
    Chang X, Lochner A, Wang HH, et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control[J]. Theranostics, 2021, 11(14): 6766–6785. doi: 10.7150/thno.60143
    [108]
    Zhou H, Ren J, Toan S, et al. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside[J]. Ageing Res Rev, 2021, 66: 101250. doi: 10.1016/j.arr.2020.101250
    [109]
    Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury[J]. Acta Pharm Sin B, 2020, 10(10): 1866–1879. doi: 10.1016/j.apsb.2020.03.004
    [110]
    Qiu Y, Ma Y, Jiang M, et al. Melatonin alleviates LPS-induced pyroptotic cell death in human stem cell-derived cardiomyocytes by activating autophagy[J]. Stem Cells Int, 2021, 2021: 8120403. doi: 10.1155/2021/8120403
    [111]
    Guo R, Wang H, Cui N. Autophagy regulation on pyroptosis: mechanism and medical implication in sepsis[J]. Mediators Inflamm, 2021, 2021: 9925059. doi: 10.1155/2021/9925059
    [112]
    Chang P, Li H, Hu H, et al. The role of HDAC6 in autophagy and NLRP3 inflammasome[J]. Front Immunol, 2021, 12: 763831. doi: 10.3389/fimmu.2021.763831
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (68) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return