Citation: | Kai Chang, Wanlin Na, Chenxia Liu, Hongxuan Xu, Yuan Liu, Yanyan Wang, Zhongyong Jiang. Peripheral CD4+CD8+ double positive T cells: A potential marker to evaluate renal impairment susceptibility during systemic lupus erythematosus[J]. The Journal of Biomedical Research, 2023, 37(1): 59-68. doi: 10.7555/JBR.36.20220094 |
[1] |
Yu F, Haas M, Glassock R, et al. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes[J]. Nat Rev Nephrol, 2017, 13(8): 483–495. doi: 10.1038/nrneph.2017.85
|
[2] |
Delarche A, Lumbroso C, Fournier A, et al. Incidence and outcome of lupus nephritis in French Polynesia[J]. Clin Nephrol, 2018, 89: 41–49. doi: 10.5414/CN109194
|
[3] |
Feng X, Pan W, Liu L, et al. Prognosis for hospitalized patients with systemic lupus erythematosus in China: 5-year update of the Jiangsu cohort[J]. PLoS One, 2016, 11(12): e0168619. doi: 10.1371/journal.pone.0168619
|
[4] |
Wang S, Shen H, Bai B, et al. Increased CD4+CD8+ double-positive T Cell in patients with primary Sjögren's syndrome correlated with disease activity[J]. J Immunol Res, 2021, 6658324. doi: 10.1155/2021/6658324
|
[5] |
Marrero YT, Suárez VM, Abraham CMM, et al. Immunophenotypic characterization of double positive T lymphocytes in Cuban older adults[J]. Exp Gerontol, 2021, 152: 111450. doi: 10.1016/j.exger.2021.111450
|
[6] |
Rahemtullah A, Harris NL, Dorn ME, et al. Beyond the lymphocyte predominant cell: CD4+CD8+ T-cells in nodular lymphocyte predominant Hodgkin lymphoma[J]. Leuk Lymphoma, 2008, 49(10): 1870–1878. doi: 10.1080/10428190802308728
|
[7] |
Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019, 71(9): 1400–1412. doi: 10.1002/art.40930
|
[8] |
Fanouriakis A, Tziolos N, Bertsias G, et al. Update οn the diagnosis and management of systemic lupus erythematosus[J]. Ann Rheum Dis, 2021, 80(1): 14–25. doi: 10.1136/annrheumdis-2020-218272
|
[9] |
Jiang Z, Liu X, Chang K, et al. Allyl isothiocyanate inhibits the proliferation of renal carcinoma cell line GRC-1 by inducing an imbalance between Bcl2 and Bax[J]. Med Sci Monit, 2016, 22: 4283–4288. doi: 10.12659/MSM.897315
|
[10] |
Chang K, Jiang Z, Liu C, et al. The effects of CYP2C19 genotype on the susceptibility for nephrosis in cardio-cerebral vascular disease treated by anticoagulation[J]. Medicine, 2016, 95(38): e4954. doi: 10.1097/MD.0000000000004954
|
[11] |
Liu S, Gong Y, Ren H, et al. The prevalence, subtypes and associated factors of hyperuricemia in lupus nephritis patients at chronic kidney disease stages 1–3[J]. Oncotarget, 2017, 8(34): 57099–57108. doi: 10.18632/oncotarget.19051
|
[12] |
Ameh OI, Kengne AP, Jayne D, et al. Standard of treatment and outcomes of adults with lupus nephritis in Africa: a systematic review[J]. Lupus, 2016, 25(11): 1269–1277. doi: 10.1177/0961203316640915
|
[13] |
Pahar B, Lackner AA, Veazey RS. Intestinal double-positive CD4+CD8+ T cells are highly activated memory cells with an increased capacity to produce cytokines[J]. Eur J Immunol, 2006, 36(3): 583–592. doi: 10.1002/eji.200535520
|
[14] |
Parel Y, Chizzolini C. CD4+ CD8+ double positive (DP) T cells in health and disease[J]. Autoimmun Rev, 2004, 3(3): 215–220. doi: 10.1016/j.autrev.2003.09.001
|
[15] |
Dashtsoodol N, Shigeura T, Aihara M, et al. Alternative pathway for the development of Vα14+ NKT cells directly from CD4-CD8- thymocytes that bypasses the CD4+CD8+ stage[J]. Nat Immunol, 2017, 18(3): 274–282. doi: 10.1038/ni.3668
|
[16] |
Schäfer S, Zernecke A. CD8+ T cells in atherosclerosis[J]. Cells, 2020, 10(1): 37. doi: 10.3390/cells10010037
|
[17] |
Abd El-Kader SM, Al-Shreef FM. Inflammatory cytokines and immune system modulation by aerobic versus resisted exercise training for elderly[J]. Afr Health Sci, 2018, 18(1): 120–131. doi: 10.4314/ahs.v18i1.16
|
[18] |
Wu Z, Zheng Y, Sheng J, et al. CD3+CD4-CD8- (double-negative) T cells in inflammation, immune disorders and cancer[J]. Front Immunol, 2022, 13: 816005. doi: 10.3389/fimmu.2022.816005
|
[19] |
Glatzová D, Cebecauer M. Dual role of CD4 in peripheral T lymphocytes[J]. Front Immunol, 2019, 10: 618. doi: 10.3389/fimmu.2019.00618
|
[20] |
Pérez-Antón E, Egui A, Thomas MC, et al. Impact of benznidazole treatment on the functional response of Trypanosoma cruzi antigen-specific CD4+CD8+ T cells in chronic Chagas disease patients[J]. PLoS Negl Trop Dis, 2018, 12(5): e0006480. doi: 10.1371/journal.pntd.0006480
|
[21] |
Wu Y, Cai B, Feng W, et al. Double positive CD4+CD8+ T cells: key suppressive role in the production of autoantibodies in systemic lupus erythematosus[J]. Indian J Med Res, 2014, 140(4): 513–519. https://pubmed.ncbi.nlm.nih.gov/25488445/
|
[22] |
Frahm MA, Picking RA, Kuruc JD, et al. CD4+CD8+ T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection[J]. J Immunol, 2012, 188(9): 4289–4296. doi: 10.4049/jimmunol.1103701
|
[23] |
Choe JY, Lee SS, Kwak SG, et al. Anti-Sm antibody, damage index, and corticosteroid use are associated with cardiac involvement in systemic lupus erythematosus: data from a prospective registry study[J]. J Korean Med Sci, 2020, 35(21): e139. doi: 10.3346/jkms.2020.35.e139
|
[24] |
Ahn SS, Jung SM, Yoo J, et al. Anti-Smith antibody is associated with disease activity in patients with new-onset systemic lupus erythematosus[J]. Rheumatol Int, 2019, 39(11): 1937–1944. doi: 10.1007/s00296-019-04445-y
|
[25] |
Wang X, Xia Y. Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies[J]. Front Immunol, 2019, 10: 1667. doi: 10.3389/fimmu.2019.01667
|
[26] |
Rekvig OP. Anti-dsDNA antibodies as a classification criterion and a diagnostic marker for systemic lupus erythematosus: critical remarks[J]. Clin Exp Immunol, 2015, 179(1): 5–10. doi: 10.1111/cei.12296
|