4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Brianna Lide, Shane McGuire, Hong Liu, Cristina Chandler. Mast cell activation syndrome—anesthetic challenges in two different clinical scenarios[J]. The Journal of Biomedical Research, 2022, 36(6): 435-439. DOI: 10.7555/JBR.36.20220071
Citation: Brianna Lide, Shane McGuire, Hong Liu, Cristina Chandler. Mast cell activation syndrome—anesthetic challenges in two different clinical scenarios[J]. The Journal of Biomedical Research, 2022, 36(6): 435-439. DOI: 10.7555/JBR.36.20220071

Mast cell activation syndrome—anesthetic challenges in two different clinical scenarios

More Information
  • Corresponding author:

    Cristina Chandler and Hong Liu, Department of Anesthesiology and Pain Medicine, University of California Davis Health, 4150 V Street, Suite 1200, Sacramento, CA 95817, USA. Tel/Fax: +1-916-734-5031/+1-916-734-7980, E-mails: cmchandler@ucdavis.edu and hualiu@ucdavis.edu

  • Received Date: April 01, 2022
  • Revised Date: April 24, 2022
  • Accepted Date: April 27, 2022
  • Available Online: May 27, 2022
  • Mast cell activation syndrome (MCAS) includes a group of disorders that result in the inappropriate release of inflammatory mediators from mast cells. These mediators can affect multiple organ systems and lead to significant morbidity, and possible fatality. Although reactions, typically in response to various nonspecific stimuli, are usually mild, they may put those with MCAS at increased risk of anaphylaxis. In this case report, we present two clinical scenarios of MCAS, and identify possible factors triggering mast cell mediator release. We also define a preoperative preventive pathway, outline anesthetic considerations, and discuss the management of immediate hypersensitivity reactions in patients with MCAS. Meticulous preoperative preparation, avoidance of triggers, and development of a plan to treat possible adverse organ responses are paramount of good outcomes.
  • This work was supported in part by the Department of Anesthesiology and Pain Medicine of University of California Davis Health and NIH grant UL1 TR000002 to the University of California Davis Health.

    CLC number: R614, Document code: B

    The authors reported no conflict of interests.

  • [1]
    Weiler CR, Austen KF, Akin C, et al. AAAAI Mast Cell Disorders Committee Work Group Report: mast cell activation syndrome (MCAS) diagnosis and management[J]. J Allergy Clin Immunol, 2019, 144(4): 883–896. doi: 10.1016/j.jaci.2019.08.023
    [2]
    Valent P, Akin C, Arock M, et al. Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal[J]. Int Arch Allergy Immunol, 2012, 157(3): 215–225. doi: 10.1159/000328760
    [3]
    Valent P, Akin C, Nedoszytko B, et al. Diagnosis, classification and management of mast cell activation syndromes (MCAS) in the era of personalized medicine[J]. Int J Mol Sci, 2020, 21(23): 9030. doi: 10.3390/ijms21239030
    [4]
    Petra AI, Panagiotidou S, Stewart JM, et al. Spectrum of mast cell activation disorders[J]. Expert Rev Clin Immunol, 2014, 10(6): 729–739. doi: 10.1586/1744666X.2014.906302
    [5]
    Di Leo E, Donne PD, Calogiuri GF, et al. Focus on the agents most frequently responsible for perioperative anaphylaxis[J]. Clin Mol Allergy, 2018, 16: 16. doi: 10.1186/s12948-018-0094-7
    [6]
    Bonadonna P, Pagani M, Aberer W, et al. Drug hypersensitivity in clonal mast cell disorders: ENDA/EAACI position paper[J]. Allergy, 2015, 70(7): 755–763. doi: 10.1111/all.12617
    [7]
    Blunk JA, Schmelz M, Zeck S, et al. Opioid-induced mast cell activation and vascular responses is not mediated by mu-opioid receptors: an in vivo microdialysis study in human skin[J]. Anesth Analg, 2004, 98(2): 364–370. doi: 10.1213/01.ANE.0000097168.32472.0D
    [8]
    Matito A, Morgado JM, Sánchez-López P, et al. Management of anesthesia in adult and pediatric mastocytosis: a study of the spanish network on mastocytosis (REMA) based on 726 anesthetic procedures[J]. Int Arch Allergy Immunol, 2015, 167(1): 47–56. doi: 10.1159/000436969
    [9]
    By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American geriatrics society 2019 updated AGS beers criteria® for potentially inappropriate medication use in older adults[J]. J Am Geriatr Soc, 2019, 67(4): 674–694. doi: 10.1111/jgs.15767
    [10]
    Hermans MAW, Arends NJT, van Wijk RG, et al. Management around invasive procedures in mastocytosis: an update[J]. Ann Allergy Asthma Immunol, 2017, 119(4): 304–309. doi: 10.1016/j.anai.2017.07.022
  • Related Articles

    [1]Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research, 2023, 37(1): 15-29. DOI: 10.7555/JBR.36.20220083
    [2]Hui Li, Yang Chen, Jianqin Niu, Chenju Yi. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases[J]. The Journal of Biomedical Research, 2022, 36(5): 343-352. DOI: 10.7555/JBR.36.20220016
    [3]Qianqian Chen, Chunmei Hu, Wei Lu, Tianxing Hang, Yan Shao, Cheng Chen, Yanli Wang, Nan Li, Linling Jin, Wei Wu, Hong Wang, Xiaoning Zeng, Weiping Xie. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing[J]. The Journal of Biomedical Research, 2022, 36(3): 167-180. DOI: 10.7555/JBR.36.20220007
    [4]Zhu Yue, Wang Linlin, Cui Chang, Qin Huiyuan, Chen Hongwu, Chen Shaojie, Lin Yongping, Cheng Hongyi, Jiang Xiaohong, Chen Minglong. Pathogenesis and drug response of iPSC-derived cardiomyocytes from two Brugada syndrome patients with different Nav1.5-subunit mutations[J]. The Journal of Biomedical Research, 2021, 35(5): 395-407. DOI: 10.7555/JBR.35.20210045
    [5]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [6]Wenping Xu, Sheng Zeng, Min Li, Zhiwen Fan, Bisheng Zhou. Aggf1 attenuates hepatic inflammation and activation of hepatic stellate cells by repressing Ccl2 transcription[J]. The Journal of Biomedical Research, 2017, 31(5): 428-436. DOI: 10.7555/JBR.30.20160046
    [7]Yu Fang, Zou Xiang. Roles and relevance of mast cells in infection and vaccination[J]. The Journal of Biomedical Research, 2016, 30(4): 253-263. DOI: 10.7555/JBR.30.20150038
    [8]Ming-Hai Wang, Ruiwen Zhang, Yong-Qing Zhou, Hang-Ping Yao. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction[J]. The Journal of Biomedical Research, 2013, 27(5): 345-356. DOI: 10.7555/JBR.27.20130038
    [9]Yu Yang, Jun Du, Zhenzhen Hu, Jiaojing Liu, Yinhui Tian, Yichao Zhu, Le Wang, Luo Gu. Activation of Rac1-PI3K/Akt is required for epidermal growth factor-induced PAK1 activation and cell migration in MDA-MB-231 breast cancer cells[J]. The Journal of Biomedical Research, 2011, 25(4): 237-245. DOI: 10.1016/S1674-8301(11)60032-8
    [10]Meryem Bektas, David S. Rubenstein. The role of intracellular protein O-glycosylation in cell adhesion and disease[J]. The Journal of Biomedical Research, 2011, 25(4): 227-236. DOI: 10.1016/S1674-8301(11)60031-6
  • Cited by

    Periodical cited type(19)

    1. Jaber SA, Saadh MJ. Biological activity comparison between ciprofloxacin loaded to silica nanoparticles and silver nanoparticles for the inhibition of Brucella melitensis. Vet World, 2024, 17(2): 407-412. DOI:10.14202/vetworld.2024.407-412
    2. Ishii K, Akahoshi E, Adeyemi OS, et al. Goethite and Hematite Nanoparticles Show Promising Anti-Toxoplasma Properties. Pharmaceutics, 2024, 16(3): 413. DOI:10.3390/pharmaceutics16030413
    3. Wierzbicki M, Kot M, Lange A, et al. Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Nanotechnol Sci Appl, 2024, 17: 77-94. DOI:10.2147/NSA.S447810
    4. Słota D, Piętak K, Florkiewicz W, et al. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. Nanomaterials (Basel), 2023, 13(9): 1469. DOI:10.3390/nano13091469
    5. Saadh MJ. Silver nanoparticle-conjugated antibiotics inhibit in vitro growth of Brucella melitensis. Vet World, 2022, 15(7): 1749-1752. DOI:10.14202/vetworld.2022.1749-1752
    6. Alves-Barroco C, Rivas-García L, Fernandes AR, et al. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol, 2022, 13: 841124. DOI:10.3389/fmicb.2022.841124
    7. Ullah A, Yin X, Wang F, et al. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and Their Isolation, Characterization, and Bioactivities. Molecules, 2021, 26(18): 5559. DOI:10.3390/molecules26185559
    8. Metwally DM, Alajmi RA, El-Khadragy MF, et al. Silver Nanoparticles Biosynthesized With Salvia officinalis Leaf Exert Protective Effect on Hepatic Tissue Injury Induced by Plasmodium chabaudi. Front Vet Sci, 2021, 7: 620665. DOI:10.3389/fvets.2020.620665
    9. Costa IN, Ribeiro M, Silva Franco P, et al. Biogenic Silver Nanoparticles Can Control Toxoplasma gondii Infection in Both Human Trophoblast Cells and Villous Explants. Front Microbiol, 2021, 11: 623947. DOI:10.3389/fmicb.2020.623947
    10. Farghaly DS, Sadek AM. Trypanocidal activity of methanol extracts of the hemolymph of Sarcophaga argyrostoma larva against Trypanosoma evansi infected mice. Vet World, 2020, 13(8): 1599-1604. DOI:10.14202/vetworld.2020.1599-1604
    11. Adeyemi OS, Arowolo AT, Hetta HF, et al. Apoferritin and Apoferritin-Capped Metal Nanoparticles Inhibit Arginine Kinase of Trypanosoma brucei. Molecules, 2020, 25(15): 3432. DOI:10.3390/molecules25153432
    12. Marcu IC, Eberhard N, Yerly A, et al. Isolation of Human Small Extracellular Vesicles and Tracking of their Uptake by Retinal Pigment Epithelial Cells In Vitro. Int J Mol Sci, 2020, 21(11): 3799. DOI:10.3390/ijms21113799
    13. Ebadi M, Saifullah B, Buskaran K, et al. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine, 2019, 14: 6661-6678. DOI:10.2147/IJN.S214923
    14. Alajmi RA, Al-Megrin WA, Metwally D, et al. Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep, 2019, 39(5): BSR20190379. DOI:10.1042/BSR20190379. Print 2019 May 31
    15. Baganizi DR, Nyairo E, Duncan SA, et al. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. Nanomaterials (Basel), 2017, 7(7): 165. DOI:10.3390/nano7070165
    16. Das B, Tripathy S, Adhikary J, et al. Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. J Biol Inorg Chem, 2017, 22(6): 893-918. DOI:10.1007/s00775-017-1468-x
    17. Hemmaragala NM, Abrahamse H, George BP. Effect of GNP functionalisation and multiple N-methylation of β-amyloid residue (32-37) on Gram-positive bacterium. IET Nanobiotechnol, 2017, 11(4): 377-382. DOI:10.1049/iet-nbt.2016.0083
    18. Adeyemi OS, Murata Y, Sugi T, et al. Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Int J Nanomedicine, 2017, 12: 1647-1661. DOI:10.2147/IJN.S122178
    19. Bano S, Nazir S, Munir S, et al. "Smart" nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy. Int J Nanomedicine, 2016, 11: 3159-66. DOI:10.2147/IJN.S106533

    Other cited types(0)

Catalog

    Figures(1)  /  Tables(1)

    Article Metrics

    Article views (2373) PDF downloads (321) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return