Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Jie Wen, Tingyu Pan, Hongyan Li, Haixia Fan, Jinhua Liu, Zhiyou Cai, Bin Zhao. Role of mitophagy in the hallmarks of aging[J]. The Journal of Biomedical Research, 2023, 37(1): 1-14. doi: 10.7555/JBR.36.20220045
Citation: Jie Wen, Tingyu Pan, Hongyan Li, Haixia Fan, Jinhua Liu, Zhiyou Cai, Bin Zhao. Role of mitophagy in the hallmarks of aging[J]. The Journal of Biomedical Research, 2023, 37(1): 1-14. doi: 10.7555/JBR.36.20220045

Role of mitophagy in the hallmarks of aging

doi: 10.7555/JBR.36.20220045
More Information
  • Corresponding author: Zhiyou Cai, Department of Neurology, Chongqing General Hospital, 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China. Tel/Fax: +86-23-63515796/+86-23-63515796, E-mail: caizhiyou@ucas.ac.cn; Bin Zhao, Department and Institute of Neurology, Guangdong Medical University, Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, 57 Renmin Road, Zhanjiang, Guangdong 524001, China. Tel/Fax: +86-759-2386949/+86-13902501596, E-mail: binzhaoe@gdmu.edu.cn/binzhaoe@163.com
  • Received: 2022-03-10
  • Revised: 2022-06-10
  • Accepted: 2022-06-27
  • Published: 2022-08-28
  • Issue Date: 2023-01-28
  • Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in functions that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging, while mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effects of mitophagy on aging and emphasize the associations between mitophagy and other signs of aging, including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effects of these elements on aging is still limited. And although the understanding of relationship between mitophagy and aging has been long-awaited, to analyze details of such a relationship remains the main challenge in aging studies.


  • CLC number: R363, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Borgoni S, Kudryashova KS, Burka K, et al. Targeting immune dysfunction in aging[J]. Ageing Res Rev, 2021, 70: 101410. doi: 10.1016/j.arr.2021.101410
    Szilard L. On the nature of the aging process[J]. Proc Natl Acad Sci U S A, 1959, 45(1): 30–45. doi: 10.1073/pnas.45.1.30
    Lombard DB, Chua KF, Mostoslavsky R, et al. DNA repair, genome stability, and aging[J]. Cell, 2005, 120(4): 497–512. doi: 10.1016/j.cell.2005.01.028
    Forster MJ, Dubey A, Dawson KM, et al. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain[J]. Proc Natl Acad Sci U S A, 1996, 93(10): 4765–4769. doi: 10.1073/pnas.93.10.4765
    ScialòF, Sriram A, Fernández-Ayala D, et al. Mitochondrial ROS produced via reverse electron transport extend animal lifespan[J]. Cell Metab, 2016, 23(4): 725–734. doi: 10.1016/j.cmet.2016.03.009
    Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics[J]. Nat Rev Mol Cell Biol, 2007, 8(11): 870–879. doi: 10.1038/nrm2275
    Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183(5): 795–803. doi: 10.1083/jcb.200809125
    Zhou H, Ren J, Toan S, et al. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside[J]. Ageing Res Rev, 2021, 66: 101250. doi: 10.1016/j.arr.2020.101250
    Sukhorukov V, Voronkov D, Baranich T, et al. Impaired mitophagy in neurons and glial cells during aging and age-related disorders[J]. Int J Mol Sci, 2021, 22(19): 10251. doi: 10.3390/ijms221910251
    Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3): 909–950. doi: 10.1152/physrev.00026.2013
    McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse[J]. Curr Biol, 2006, 16(14): R551–R560. doi: 10.1016/j.cub.2006.06.054
    Harman D. Aging: a theory based on free radical and radiation chemistry[J]. J Gerontol, 1956, 11(3): 298–300. doi: 10.1093/geronj/11.3.298
    López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194–1217. doi: 10.1016/j.cell.2013.05.039
    Krysko DV, Agostinis P, Krysko O, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation[J]. Trends Immunol, 2011, 32(4): 157–164. doi: 10.1016/j.it.2011.01.005
    Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104–107. doi: 10.1038/nature08780
    Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407–420. doi: 10.1038/nri.2016.58
    Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy[J]. Proc Natl Acad Sci U S A, 2014, 111(43): 15514–15519. doi: 10.1073/pnas.1414859111
    Baloyannis SJ. Mitochondrial alterations in Alzheimer's disease[J]. J Alzheimers Dis, 2006, 9(2): 119–126. doi: 10.3233/JAD-2006-9204
    Trushina E, Nemutlu E, Zhang S, et al. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer's disease[J]. PLoS One, 2012, 7(2): e32737. doi: 10.1371/journal.pone.0032737
    Morton H, Kshirsagar S, Orlov E, et al. Defective mitophagy and synaptic degeneration in Alzheimer's disease: focus on aging, mitochondria and synapse[J]. Free Radic Biol Med, 2021, 172: 652–667. doi: 10.1016/j.freeradbiomed.2021.07.013
    Kandimalla R, Manczak M, Pradeepkiran JA, et al. A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic tau mouse model of Alzheimer disease[J]. Hum Mol Genet, 2022, 31(11): 1788–1805. doi: 10.1093/hmg/ddab360
    Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics[J]. Biochim Biophys Acta (BBA)-Mol Basis Dis, 2012, 1822(5): 639–649. doi: 10.1016/j.bbadis.2011.10.011
    Grünewald A, Voges L, Rakovic A, et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts[J]. PLoS One, 2010, 5(9): e12962. doi: 10.1371/journal.pone.0012962
    Geisler S, Holmström KM, Treis A, et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations[J]. Autophagy, 2010, 6(7): 871–878. doi: 10.4161/auto.6.7.13286
    Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism[J]. Cold Spring Harb Perspect Biol, 2012, 4(11): a011338. doi: 10.1101/cshperspect.a011338
    Swerdlow NS, Wilkins HM. Mitophagy and the brain[J]. Int J Mol Sci, 2020, 21(24): 9661. doi: 10.3390/ijms21249661
    Meissner C, Lorenz H, Weihofen A, et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking[J]. J Neurochem, 2011, 117(5): 856–867. doi: 10.1111/j.1471-4159.2011.07253.x
    Jin SM, Lazarou M, Wang C, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. J Cell Biol, 2010, 191(5): 933–942. doi: 10.1083/jcb.201008084
    Rakovic A, Shurkewitsch K, Seibler P, et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons[J]. J Biol Chem, 2013, 288(4): 2223–2237. doi: 10.1074/jbc.M112.391680
    Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance[J]. J Cell Sci, 2012, 125(Pt 4): 795–799. doi: 10.1242/jcs.093849
    Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298. doi: 10.1371/journal.pbio.1000298
    Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. J Cell Biol, 2010, 189(2): 211–221. doi: 10.1083/jcb.200910140
    Hanna RA, Quinsay MN, Orogo AM, et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287(23): 19094–19104. doi: 10.1074/jbc.M111.322933
    Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy[J]. Cell Death Differ, 2009, 16(7): 939–946. doi: 10.1038/cdd.2009.16
    Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14(2): 177–185. doi: 10.1038/ncb2422
    Feng D, Liu L, Zhu Y, et al. Molecular signaling toward mitophagy and its physiological significance[J]. Exp Cell Res, 2013, 319(12): 1697–1705. doi: 10.1016/j.yexcr.2013.03.034
    Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses[J]. Biochim Biophys Acta (BBA)- Mol Cell Res, 2015, 1853(10): 2784–2790. doi: 10.1016/j.bbamcr.2015.03.013
    Sowter HM, Ratcliffe PJ, Watson P, et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors[J]. Cancer Res, 2001, 61(18): 6669–6673. https://pubmed.ncbi.nlm.nih.gov/11559532/
    Liu KE, Frazier WA. Phosphorylation of the BNIP3 C-terminus inhibits mitochondrial damage and cell death without blocking autophagy[J]. PLoS One, 2015, 10(6): e0129667. doi: 10.1371/journal.pone.0129667
    Rogov VV, Suzuki H, Marinković M, et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins[J]. Sci Rep, 2017, 7(1): 1131. doi: 10.1038/s41598-017-01258-6
    Ma K, Zhang Z, Chang R, et al. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate[J]. Cell Death Differ, 2020, 27(3): 1036–1051. doi: 10.1038/s41418-019-0396-4
    Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54(3): 362–377. doi: 10.1016/j.molcel.2014.02.034
    Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy[J]. EMBO Rep, 2017, 18(3): 495–509. doi: 10.15252/embr.201643309
    Zhou H, Wang J, Zhu P, et al. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J]. Basic Res Cardiol, 2018, 113(4): 23. doi: 10.1007/s00395-018-0682-1
    Zhou H, Li D, Zhu P, et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways[J]. J Pineal Res, 2017, 63(4): e12438. doi: 10.1111/jpi.12438
    Zhang T, Xue L, Li L, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy[J]. J Biol Chem, 2016, 291(41): 21616–21629. doi: 10.1074/jbc.M116.733410
    Davis CHO, Marsh-Armstrong N. Discovery and implications of transcellular mitophagy[J]. Autophagy, 2014, 10(12): 2383–2384. doi: 10.4161/15548627.2014.981920
    Davis CHO, Kim KY, Bushong EA, et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci U S A, 2014, 111(26): 9633–9638. doi: 10.1073/pnas.1404651111
    Bakula D, Scheibye-Knudsen M. MitophAging: mitophagy in aging and disease[J]. Front Cell Dev Biol, 2020, 8: 239. doi: 10.3389/fcell.2020.00239
    Jang JY, Blum A, Liu J, et al. The role of mitochondria in aging[J]. J Clin Invest, 2018, 128(9): 3662–3670. doi: 10.1172/JCI120842
    Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer's disease[J]. Ageing Res Rev, 2020, 64: 101191. doi: 10.1016/j.arr.2020.101191
    Santoro A, Salvioli S, Raule N, et al. Mitochondrial DNA involvement in human longevity[J]. Biochim Biophys Acta, 2006, 1757(9–10): 1388–1399. doi: 10.1016/j.bbabio.2006.05.040
    Salvioli S, Olivieri F, Marchegiani F, et al. Genes, ageing and longevity in humans: problems, advantages and perspectives[J]. Free Radic Res, 2006, 40(12): 1303–1323. doi: 10.1080/10715760600917136
    Rose G, Santoro A, Salvioli S. Mitochondria and mitochondria-induced signalling molecules as longevity determinants[J]. Mech Ageing Dev, 2017, 165: 115–128. doi: 10.1016/j.mad.2016.12.002
    Fritsch LE, Moore ME, Sarraf SA, et al. Ubiquitin and receptor-dependent mitophagy pathways and their implication in neurodegeneration[J]. J Mol Biol, 2020, 432(8): 2510–2524. doi: 10.1016/j.jmb.2019.10.015
    Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases[J]. CNS Neurosci Ther, 2019, 25(7): 859–875. doi: 10.1111/cns.13140
    Zhang X, Wang Y, Wang Y, et al. p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum[J]. Autophagy, 2009, 5(3): 339–350. doi: 10.4161/auto.5.3.8174
    Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(2): 93–108. doi: 10.1038/nrm.2017.129
    Wei M, Brandhorst S, Shelehchi M, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease[J]. Sci Transl Med, 2017, 9(377): eaai8700. doi: 10.1126/scitranslmed.aai8700
    Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients[J]. Oncogene, 2011, 30(30): 3305–3316. doi: 10.1038/onc.2011.91
    Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: lessons from invertebrate models[J]. Ageing Res Rev, 2017, 39: 3–14. doi: 10.1016/j.arr.2016.12.005
    Brandhorst S, Harputlugil E, Mitchell JR, et al. Protective effects of short-term dietary restriction in surgical stress and chemotherapy[J]. Ageing Res Rev, 2017, 39: 68–77. doi: 10.1016/j.arr.2017.02.001
    Madia F, Wei M, Yuan V, et al. Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polζ-dependent mechanism[J]. J Cell Biol, 2009, 186(4): 509–523. doi: 10.1083/jcb.200906011
    Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans[J]. Science, 2010, 328(5976): 321–326. doi: 10.1126/science.1172539
    Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians?[J]. Science, 2003, 299(5611): 1342–1346. doi: 10.1126/science.1077991
    Kenyon C. A conserved regulatory system for aging[J]. Cell, 2001, 105(2): 165–168. doi: 10.1016/S0092-8674(01)00306-3
    Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms[J]. Nature, 2000, 408(6809): 255–262. doi: 10.1038/35041700
    Boya P, González-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis[J]. Mol Cell Biol, 2005, 25(3): 1025–1040. doi: 10.1128/MCB.25.3.1025-1040.2005
    Mehrabani S, Bagherniya M, Askari G, et al. The effect of fasting or calorie restriction on mitophagy induction: a literature review[J]. J Cachexia, Sarcopenia Muscle, 2020, 11(6): 1447–1458. doi: 10.1002/jcsm.12611
    Martin-Montalvo A, de Cabo R. Mitochondrial metabolic reprogramming induced by calorie restriction[J]. Antioxid Redox Signal, 2013, 19(3): 310–320. doi: 10.1089/ars.2012.4866
    Finley LWS, Lee J, Souza A, et al. Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction[J]. Proc Natl Acad Sci U S A, 2012, 109(8): 2931–2936. doi: 10.1073/pnas.1115813109
    Niemann B, Chen Y, Issa H, et al. Caloric restriction delays cardiac ageing in rats: role of mitochondria[J]. Cardiovasc Res, 2010, 88(2): 267–276. doi: 10.1093/cvr/cvq273
    Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction[J]. Clin Interv Aging, 2017, 12: 1887–1902. doi: 10.2147/CIA.S126458
    Barzilai N, Huffman DM, Muzumdar RH, et al. The critical role of metabolic pathways in aging[J]. Diabetes, 2012, 61(6): 1315–1322. doi: 10.2337/db11-1300
    Houtkooper RH, Williams RW, Auwerx J. Metabolic networks of longevity[J]. Cell, 2010, 142(1): 9–14. doi: 10.1016/j.cell.2010.06.029
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274–293. doi: 10.1016/j.cell.2012.03.017
    Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease[J]. Nature, 2013, 493(7432): 338–345. doi: 10.1038/nature11861
    Kaeberlein M, Powers III RW, Steffen KK, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients[J]. Science, 2005, 310(5751): 1193–1196. doi: 10.1126/science.1115535
    Hansen M, Taubert S, Crawford D, et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans[J]. Aging cell, 2007, 6(1): 95–110. doi: 10.1111/j.1474-9726.2006.00267.x
    Alers S, Löffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks[J]. Mol Cell Biol, 2012, 32(1): 2–11. doi: 10.1128/MCB.06159-11
    Penev A, Markiewicz-Potoczny M, Sfeir A, et al. Stem cells at odds with telomere maintenance and protection[J]. Trends Cell Biol, 2022, 32(6): 527–536. doi: 10.1016/j.tcb.2021.12.007
    Shammas MA. Telomeres, lifestyle, cancer, and aging[J]. Curr Opin Clin Nutr Metab Care, 2011, 14(1): 28–34. doi: 10.1097/MCO.0b013e32834121b1
    Nguyen THD, Tam J, Wu RA, et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme[J]. Nature, 2018, 557(7704): 190–195. doi: 10.1038/s41586-018-0062-x
    Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging[J]. Nat Med, 2006, 12(10): 1133–1138. doi: 10.1038/nm1006-1133
    Tran M, Reddy PH. Defective autophagy and mitophagy in aging and Alzheimer's disease[J]. Front Neurosci, 2021, 14: 612757. doi: 10.3389/fnins.2020.612757
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25(3): 585–621. doi: 10.1016/0014-4827(61)90192-6
    Correia-Melo C, Passos JF. Mitochondria: are they causal players in cellular senescence?[J]. Biochim Biophys Acta (BBA)-Bioenerg, 2015, 1847(11): 1373–1379. doi: 10.1016/j.bbabio.2015.05.017
    Summer R, Shaghaghi H, Schriner D, et al. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(6): L1049–L1060. doi: 10.1152/ajplung.00244.2018
    Hoffmann RF, Zarrintan S, Brandenburg SM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells[J]. Respir Res, 2013, 14(1): 97. doi: 10.1186/1465-9921-14-97
    Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J]. Nature, 2007, 447(7145): 725–729. doi: 10.1038/nature05862
    Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging[J]. Science, 2011, 333(6046): 1109–1112. doi: 10.1126/science.1201940
    Calió ML, Henriques E, Siena A, et al. Mitochondrial dysfunction, neurogenesis, and epigenetics: putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment[J]. Front Neurosci, 2020, 14: 679. doi: 10.3389/fnins.2020.00679
    Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks[J]. Trends Genet, 2007, 23(8): 413–418. doi: 10.1016/j.tig.2007.05.008
    Han S, Brunet A. Histone methylation makes its mark on longevity[J]. Trends Cell Biol, 2012, 22(1): 42–49. doi: 10.1016/j.tcb.2011.11.001
    Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99(3): 247–257. doi: 10.1016/S0092-8674(00)81656-6
    Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria[J]. Proc Natl Acad Sci U S A, 2011, 108(9): 3630–3635. doi: 10.1073/pnas.1012311108
    Felsenfeld G, Groudine M. Controlling the double helix[J]. Nature, 2003, 421(6921): 448–453. doi: 10.1038/nature01411
    Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain[J]. Science, 2009, 324(5929): 929–930. doi: 10.1126/science.1169786
    Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930–935. doi: 10.1126/science.1170116
    Park YJ, Lee S, Lim S, et al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics[J]. Proc Natl Acad Sci U S A, 2021, 118(11): e2021073118. doi: 10.1073/pnas.2021073118
    Greer EL, Maures TJ, Hauswirth AG, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans[J]. Nature, 2010, 466(7304): 383–387. doi: 10.1038/nature09195
    Siebold AP, Banerjee R, Tie F, et al. Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 169–174. doi: 10.1073/pnas.0907739107
    Pietrocola F, Galluzzi L, Pedro JMBS, et al. Acetyl coenzyme A: a central metabolite and second messenger[J]. Cell Metabolism, 2015, 21(6): 805–821. doi: 10.1016/j.cmet.2015.05.014
    Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease[J]. EMBO Mol Med, 2014, 6(5): 580–589. doi: 10.1002/emmm.201303782
    Ambekar T, Pawar J, Rathod R, et al. Mitochondrial quality control: epigenetic signatures and therapeutic strategies[J]. Neurochem Int, 2021, 148: 105095. doi: 10.1016/j.neuint.2021.105095
    Dong Y, Yoshitomi T, Hu J, et al. Long noncoding RNAs coordinate functions between mitochondria and the nucleus[J]. Epigenetics Chromatin, 2017, 10(1): 41. doi: 10.1186/s13072-017-0149-x
    Li Y, Xu S, Xu D, et al. Pediatric pan-central nervous system tumor methylome analyses reveal immune-related LncRNAs[J]. Front Immunol, 2022, 13: 853904. doi: 10.3389/fimmu.2022.853904
    Zhao Y, Sun L, Wang RR, et al. The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: new players in an old arena[J]. Crit Rev Oncol Hematol, 2018, 131: 76–82. doi: 10.1016/j.critrevonc.2018.08.005
    Anand A, Pandi G. Noncoding RNA: an insight into chloroplast and mitochondrial gene expressions[J]. Life, 2021, 11(1): 49. doi: 10.3390/life11010049
    Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an antiaging paradigm[J]. Int Rev Cell Mol Biol, 2018, 340: 35–77. doi: 10.1016/bs.ircmb.2018.05.002
    English J, Son JM, Cardamone MD, et al. Decoding the rosetta stone of mitonuclear communication[J]. Pharmacol Res, 2020, 161: 105161. doi: 10.1016/j.phrs.2020.105161
    Rackham O, Shearwood AMJ, Mercer TR, et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins[J]. RNA, 2011, 17(12): 2085–2093. doi: 10.1261/rna.029405.111
    Xiang X, Fu Y, Zhao K, et al. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2[J]. Theranostics, 2021, 11(10): 4929–4944. doi: 10.7150/thno.55672
    Tai Y, Chen J, Tao Z, et al. Non-coding RNAs: new players in mitophagy and neurodegeneration[J]. Neurochem Int, 2022, 152: 105253. doi: 10.1016/j.neuint.2021.105253
    Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control[J]. Ageing Res Rev, 2011, 10(2): 205–215. doi: 10.1016/j.arr.2010.02.001
    Münch C. The different axes of the mammalian mitochondrial unfolded protein response[J]. BMC Biol, 2018, 16(1): 81. doi: 10.1186/s12915-018-0548-x
    Drake JC, Yan Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing[J]. J Physiol, 2017, 595(20): 6391–6399. doi: 10.1113/JP274337
    Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis[J]. Nature, 2011, 475(7356): 324–332. doi: 10.1038/nature10317
    Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182): 1069–1075. doi: 10.1038/nature06639
    Powers ET, Morimoto RI, Dillin A, et al. Biological and chemical approaches to diseases of proteostasis deficiency[J]. Annu Rev Biochem, 2009, 78: 959–991. doi: 10.1146/annurev.biochem.052308.114844
    Austriaco NR Jr. Review: to bud until death: the genetics of ageing in the yeast, Saccharomyces[J]. Yeast, 1996, 12(7): 623–630. doi: 10.1002/(SICI)1097-0061(19960615)12:7<623::AID-YEA968>3.0.CO;2-G
    Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J]. Dev Cell, 2009, 17(1): 87–97. doi: 10.1016/j.devcel.2009.06.013
    Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J]. Dev Cell, 2009, 17(1): 98–109. doi: 10.1016/j.devcel.2009.06.014
    Wang K, Klionsky DJ. Mitochondria removal by autophagy[J]. Autophagy, 2011, 7(3): 297–300. doi: 10.4161/auto.7.3.14502
    Schulz AM, Haynes CM. UPRmt-mediated cytoprotection and organismal aging[J]. Biochim Biophys Acta (BBA)-Bioenerg, 2015, 1847(11): 1448–1456. doi: 10.1016/j.bbabio.2015.03.008
    Tomaru U, Takahashi S, Ishizu A, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities[J]. Am J Pathol, 2012, 180(3): 963–972. doi: 10.1016/j.ajpath.2011.11.012
    Dorn II GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev, 2015, 29(19): 1981–1991. doi: 10.1101/gad.269894.115
    Weng H, Ma Y, Chen L, et al. A new vision of mitochondrial unfolded protein response to the sirtuin family[J]. Curr Neuropharmacol, 2020, 18(7): 613–623. doi: 10.2174/1570159X18666200123165002
    Potes Y, de Luxán-Delgado B, Rodriguez-González S, et al. Overweight in elderly people induces impaired autophagy in skeletal muscle[J]. Free Radic Biol Med, 2017, 110: 31–41. doi: 10.1016/j.freeradbiomed.2017.05.018
    Sakuma K, Kinoshita M, Ito Y, et al. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice[J]. J Cachexia, Sarcopenia Muscle, 2016, 7(2): 204–212. doi: 10.1002/jcsm.12045
    Billia F, Hauck L, Konecny F, et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function[J]. Proc Natl Acad Sci U S A, 2011, 108(23): 9572–9577. doi: 10.1073/pnas.1106291108
    Kubli DA, Zhang X, Lee Y, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction[J]. J Biol Chem, 2013, 288(2): 915–926. doi: 10.1074/jbc.M112.411363
    Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure[J]. Nature, 2012, 485(7397): 251–255. doi: 10.1038/nature10992
    de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging[J]. Bioinformatics, 2009, 25(7): 875–881. doi: 10.1093/bioinformatics/btp073
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1106) PDF downloads(133) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint