Citation: | Jie Wen, Tingyu Pan, Hongyan Li, Haixia Fan, Jinhua Liu, Zhiyou Cai, Bin Zhao. Role of mitophagy in the hallmarks of aging[J]. The Journal of Biomedical Research, 2023, 37(1): 1-14. doi: 10.7555/JBR.36.20220045 |
[1] |
Borgoni S, Kudryashova KS, Burka K, et al. Targeting immune dysfunction in aging[J]. Ageing Res Rev, 2021, 70: 101410. doi: 10.1016/j.arr.2021.101410
|
[2] |
Szilard L. On the nature of the aging process[J]. Proc Natl Acad Sci U S A, 1959, 45(1): 30–45. doi: 10.1073/pnas.45.1.30
|
[3] |
Lombard DB, Chua KF, Mostoslavsky R, et al. DNA repair, genome stability, and aging[J]. Cell, 2005, 120(4): 497–512. doi: 10.1016/j.cell.2005.01.028
|
[4] |
Forster MJ, Dubey A, Dawson KM, et al. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain[J]. Proc Natl Acad Sci U S A, 1996, 93(10): 4765–4769. doi: 10.1073/pnas.93.10.4765
|
[5] |
ScialòF, Sriram A, Fernández-Ayala D, et al. Mitochondrial ROS produced via reverse electron transport extend animal lifespan[J]. Cell Metab, 2016, 23(4): 725–734. doi: 10.1016/j.cmet.2016.03.009
|
[6] |
Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics[J]. Nat Rev Mol Cell Biol, 2007, 8(11): 870–879. doi: 10.1038/nrm2275
|
[7] |
Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183(5): 795–803. doi: 10.1083/jcb.200809125
|
[8] |
Zhou H, Ren J, Toan S, et al. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside[J]. Ageing Res Rev, 2021, 66: 101250. doi: 10.1016/j.arr.2020.101250
|
[9] |
Sukhorukov V, Voronkov D, Baranich T, et al. Impaired mitophagy in neurons and glial cells during aging and age-related disorders[J]. Int J Mol Sci, 2021, 22(19): 10251. doi: 10.3390/ijms221910251
|
[10] |
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3): 909–950. doi: 10.1152/physrev.00026.2013
|
[11] |
McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse[J]. Curr Biol, 2006, 16(14): R551–R560. doi: 10.1016/j.cub.2006.06.054
|
[12] |
Harman D. Aging: a theory based on free radical and radiation chemistry[J]. J Gerontol, 1956, 11(3): 298–300. doi: 10.1093/geronj/11.3.298
|
[13] |
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194–1217. doi: 10.1016/j.cell.2013.05.039
|
[14] |
Krysko DV, Agostinis P, Krysko O, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation[J]. Trends Immunol, 2011, 32(4): 157–164. doi: 10.1016/j.it.2011.01.005
|
[15] |
Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104–107. doi: 10.1038/nature08780
|
[16] |
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407–420. doi: 10.1038/nri.2016.58
|
[17] |
Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy[J]. Proc Natl Acad Sci U S A, 2014, 111(43): 15514–15519. doi: 10.1073/pnas.1414859111
|
[18] |
Baloyannis SJ. Mitochondrial alterations in Alzheimer's disease[J]. J Alzheimers Dis, 2006, 9(2): 119–126. doi: 10.3233/JAD-2006-9204
|
[19] |
Trushina E, Nemutlu E, Zhang S, et al. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer's disease[J]. PLoS One, 2012, 7(2): e32737. doi: 10.1371/journal.pone.0032737
|
[20] |
Morton H, Kshirsagar S, Orlov E, et al. Defective mitophagy and synaptic degeneration in Alzheimer's disease: focus on aging, mitochondria and synapse[J]. Free Radic Biol Med, 2021, 172: 652–667. doi: 10.1016/j.freeradbiomed.2021.07.013
|
[21] |
Kandimalla R, Manczak M, Pradeepkiran JA, et al. A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic tau mouse model of Alzheimer disease[J]. Hum Mol Genet, 2022, 31(11): 1788–1805. doi: 10.1093/hmg/ddab360
|
[22] |
Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics[J]. Biochim Biophys Acta (BBA)-Mol Basis Dis, 2012, 1822(5): 639–649. doi: 10.1016/j.bbadis.2011.10.011
|
[23] |
Grünewald A, Voges L, Rakovic A, et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts[J]. PLoS One, 2010, 5(9): e12962. doi: 10.1371/journal.pone.0012962
|
[24] |
Geisler S, Holmström KM, Treis A, et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations[J]. Autophagy, 2010, 6(7): 871–878. doi: 10.4161/auto.6.7.13286
|
[25] |
Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism[J]. Cold Spring Harb Perspect Biol, 2012, 4(11): a011338. doi: 10.1101/cshperspect.a011338
|
[26] |
Swerdlow NS, Wilkins HM. Mitophagy and the brain[J]. Int J Mol Sci, 2020, 21(24): 9661. doi: 10.3390/ijms21249661
|
[27] |
Meissner C, Lorenz H, Weihofen A, et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking[J]. J Neurochem, 2011, 117(5): 856–867. doi: 10.1111/j.1471-4159.2011.07253.x
|
[28] |
Jin SM, Lazarou M, Wang C, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. J Cell Biol, 2010, 191(5): 933–942. doi: 10.1083/jcb.201008084
|
[29] |
Rakovic A, Shurkewitsch K, Seibler P, et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons[J]. J Biol Chem, 2013, 288(4): 2223–2237. doi: 10.1074/jbc.M112.391680
|
[30] |
Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance[J]. J Cell Sci, 2012, 125(Pt 4): 795–799. doi: 10.1242/jcs.093849
|
[31] |
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298. doi: 10.1371/journal.pbio.1000298
|
[32] |
Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. J Cell Biol, 2010, 189(2): 211–221. doi: 10.1083/jcb.200910140
|
[33] |
Hanna RA, Quinsay MN, Orogo AM, et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287(23): 19094–19104. doi: 10.1074/jbc.M111.322933
|
[34] |
Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy[J]. Cell Death Differ, 2009, 16(7): 939–946. doi: 10.1038/cdd.2009.16
|
[35] |
Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14(2): 177–185. doi: 10.1038/ncb2422
|
[36] |
Feng D, Liu L, Zhu Y, et al. Molecular signaling toward mitophagy and its physiological significance[J]. Exp Cell Res, 2013, 319(12): 1697–1705. doi: 10.1016/j.yexcr.2013.03.034
|
[37] |
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses[J]. Biochim Biophys Acta (BBA)- Mol Cell Res, 2015, 1853(10): 2784–2790. doi: 10.1016/j.bbamcr.2015.03.013
|
[38] |
Sowter HM, Ratcliffe PJ, Watson P, et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors[J]. Cancer Res, 2001, 61(18): 6669–6673. https://pubmed.ncbi.nlm.nih.gov/11559532/
|
[39] |
Liu KE, Frazier WA. Phosphorylation of the BNIP3 C-terminus inhibits mitochondrial damage and cell death without blocking autophagy[J]. PLoS One, 2015, 10(6): e0129667. doi: 10.1371/journal.pone.0129667
|
[40] |
Rogov VV, Suzuki H, Marinković M, et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins[J]. Sci Rep, 2017, 7(1): 1131. doi: 10.1038/s41598-017-01258-6
|
[41] |
Ma K, Zhang Z, Chang R, et al. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate[J]. Cell Death Differ, 2020, 27(3): 1036–1051. doi: 10.1038/s41418-019-0396-4
|
[42] |
Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54(3): 362–377. doi: 10.1016/j.molcel.2014.02.034
|
[43] |
Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy[J]. EMBO Rep, 2017, 18(3): 495–509. doi: 10.15252/embr.201643309
|
[44] |
Zhou H, Wang J, Zhu P, et al. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J]. Basic Res Cardiol, 2018, 113(4): 23. doi: 10.1007/s00395-018-0682-1
|
[45] |
Zhou H, Li D, Zhu P, et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways[J]. J Pineal Res, 2017, 63(4): e12438. doi: 10.1111/jpi.12438
|
[46] |
Zhang T, Xue L, Li L, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy[J]. J Biol Chem, 2016, 291(41): 21616–21629. doi: 10.1074/jbc.M116.733410
|
[47] |
Davis CHO, Marsh-Armstrong N. Discovery and implications of transcellular mitophagy[J]. Autophagy, 2014, 10(12): 2383–2384. doi: 10.4161/15548627.2014.981920
|
[48] |
Davis CHO, Kim KY, Bushong EA, et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci U S A, 2014, 111(26): 9633–9638. doi: 10.1073/pnas.1404651111
|
[49] |
Bakula D, Scheibye-Knudsen M. MitophAging: mitophagy in aging and disease[J]. Front Cell Dev Biol, 2020, 8: 239. doi: 10.3389/fcell.2020.00239
|
[50] |
Jang JY, Blum A, Liu J, et al. The role of mitochondria in aging[J]. J Clin Invest, 2018, 128(9): 3662–3670. doi: 10.1172/JCI120842
|
[51] |
Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer's disease[J]. Ageing Res Rev, 2020, 64: 101191. doi: 10.1016/j.arr.2020.101191
|
[52] |
Santoro A, Salvioli S, Raule N, et al. Mitochondrial DNA involvement in human longevity[J]. Biochim Biophys Acta, 2006, 1757(9–10): 1388–1399. doi: 10.1016/j.bbabio.2006.05.040
|
[53] |
Salvioli S, Olivieri F, Marchegiani F, et al. Genes, ageing and longevity in humans: problems, advantages and perspectives[J]. Free Radic Res, 2006, 40(12): 1303–1323. doi: 10.1080/10715760600917136
|
[54] |
Rose G, Santoro A, Salvioli S. Mitochondria and mitochondria-induced signalling molecules as longevity determinants[J]. Mech Ageing Dev, 2017, 165: 115–128. doi: 10.1016/j.mad.2016.12.002
|
[55] |
Fritsch LE, Moore ME, Sarraf SA, et al. Ubiquitin and receptor-dependent mitophagy pathways and their implication in neurodegeneration[J]. J Mol Biol, 2020, 432(8): 2510–2524. doi: 10.1016/j.jmb.2019.10.015
|
[56] |
Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases[J]. CNS Neurosci Ther, 2019, 25(7): 859–875. doi: 10.1111/cns.13140
|
[57] |
Zhang X, Wang Y, Wang Y, et al. p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum[J]. Autophagy, 2009, 5(3): 339–350. doi: 10.4161/auto.5.3.8174
|
[58] |
Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(2): 93–108. doi: 10.1038/nrm.2017.129
|
[59] |
Wei M, Brandhorst S, Shelehchi M, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease[J]. Sci Transl Med, 2017, 9(377): eaai8700. doi: 10.1126/scitranslmed.aai8700
|
[60] |
Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients[J]. Oncogene, 2011, 30(30): 3305–3316. doi: 10.1038/onc.2011.91
|
[61] |
Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: lessons from invertebrate models[J]. Ageing Res Rev, 2017, 39: 3–14. doi: 10.1016/j.arr.2016.12.005
|
[62] |
Brandhorst S, Harputlugil E, Mitchell JR, et al. Protective effects of short-term dietary restriction in surgical stress and chemotherapy[J]. Ageing Res Rev, 2017, 39: 68–77. doi: 10.1016/j.arr.2017.02.001
|
[63] |
Madia F, Wei M, Yuan V, et al. Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polζ-dependent mechanism[J]. J Cell Biol, 2009, 186(4): 509–523. doi: 10.1083/jcb.200906011
|
[64] |
Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans[J]. Science, 2010, 328(5976): 321–326. doi: 10.1126/science.1172539
|
[65] |
Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians?[J]. Science, 2003, 299(5611): 1342–1346. doi: 10.1126/science.1077991
|
[66] |
Kenyon C. A conserved regulatory system for aging[J]. Cell, 2001, 105(2): 165–168. doi: 10.1016/S0092-8674(01)00306-3
|
[67] |
Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms[J]. Nature, 2000, 408(6809): 255–262. doi: 10.1038/35041700
|
[68] |
Boya P, González-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis[J]. Mol Cell Biol, 2005, 25(3): 1025–1040. doi: 10.1128/MCB.25.3.1025-1040.2005
|
[69] |
Mehrabani S, Bagherniya M, Askari G, et al. The effect of fasting or calorie restriction on mitophagy induction: a literature review[J]. J Cachexia, Sarcopenia Muscle, 2020, 11(6): 1447–1458. doi: 10.1002/jcsm.12611
|
[70] |
Martin-Montalvo A, de Cabo R. Mitochondrial metabolic reprogramming induced by calorie restriction[J]. Antioxid Redox Signal, 2013, 19(3): 310–320. doi: 10.1089/ars.2012.4866
|
[71] |
Finley LWS, Lee J, Souza A, et al. Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction[J]. Proc Natl Acad Sci U S A, 2012, 109(8): 2931–2936. doi: 10.1073/pnas.1115813109
|
[72] |
Niemann B, Chen Y, Issa H, et al. Caloric restriction delays cardiac ageing in rats: role of mitochondria[J]. Cardiovasc Res, 2010, 88(2): 267–276. doi: 10.1093/cvr/cvq273
|
[73] |
Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction[J]. Clin Interv Aging, 2017, 12: 1887–1902. doi: 10.2147/CIA.S126458
|
[74] |
Barzilai N, Huffman DM, Muzumdar RH, et al. The critical role of metabolic pathways in aging[J]. Diabetes, 2012, 61(6): 1315–1322. doi: 10.2337/db11-1300
|
[75] |
Houtkooper RH, Williams RW, Auwerx J. Metabolic networks of longevity[J]. Cell, 2010, 142(1): 9–14. doi: 10.1016/j.cell.2010.06.029
|
[76] |
Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274–293. doi: 10.1016/j.cell.2012.03.017
|
[77] |
Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease[J]. Nature, 2013, 493(7432): 338–345. doi: 10.1038/nature11861
|
[78] |
Kaeberlein M, Powers III RW, Steffen KK, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients[J]. Science, 2005, 310(5751): 1193–1196. doi: 10.1126/science.1115535
|
[79] |
Hansen M, Taubert S, Crawford D, et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans[J]. Aging cell, 2007, 6(1): 95–110. doi: 10.1111/j.1474-9726.2006.00267.x
|
[80] |
Alers S, Löffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks[J]. Mol Cell Biol, 2012, 32(1): 2–11. doi: 10.1128/MCB.06159-11
|
[81] |
Penev A, Markiewicz-Potoczny M, Sfeir A, et al. Stem cells at odds with telomere maintenance and protection[J]. Trends Cell Biol, 2022, 32(6): 527–536. doi: 10.1016/j.tcb.2021.12.007
|
[82] |
Shammas MA. Telomeres, lifestyle, cancer, and aging[J]. Curr Opin Clin Nutr Metab Care, 2011, 14(1): 28–34. doi: 10.1097/MCO.0b013e32834121b1
|
[83] |
Nguyen THD, Tam J, Wu RA, et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme[J]. Nature, 2018, 557(7704): 190–195. doi: 10.1038/s41586-018-0062-x
|
[84] |
Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging[J]. Nat Med, 2006, 12(10): 1133–1138. doi: 10.1038/nm1006-1133
|
[85] |
Tran M, Reddy PH. Defective autophagy and mitophagy in aging and Alzheimer's disease[J]. Front Neurosci, 2021, 14: 612757. doi: 10.3389/fnins.2020.612757
|
[86] |
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25(3): 585–621. doi: 10.1016/0014-4827(61)90192-6
|
[87] |
Correia-Melo C, Passos JF. Mitochondria: are they causal players in cellular senescence?[J]. Biochim Biophys Acta (BBA)-Bioenerg, 2015, 1847(11): 1373–1379. doi: 10.1016/j.bbabio.2015.05.017
|
[88] |
Summer R, Shaghaghi H, Schriner D, et al. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(6): L1049–L1060. doi: 10.1152/ajplung.00244.2018
|
[89] |
Hoffmann RF, Zarrintan S, Brandenburg SM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells[J]. Respir Res, 2013, 14(1): 97. doi: 10.1186/1465-9921-14-97
|
[90] |
Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J]. Nature, 2007, 447(7145): 725–729. doi: 10.1038/nature05862
|
[91] |
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging[J]. Science, 2011, 333(6046): 1109–1112. doi: 10.1126/science.1201940
|
[92] |
Calió ML, Henriques E, Siena A, et al. Mitochondrial dysfunction, neurogenesis, and epigenetics: putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment[J]. Front Neurosci, 2020, 14: 679. doi: 10.3389/fnins.2020.00679
|
[93] |
Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks[J]. Trends Genet, 2007, 23(8): 413–418. doi: 10.1016/j.tig.2007.05.008
|
[94] |
Han S, Brunet A. Histone methylation makes its mark on longevity[J]. Trends Cell Biol, 2012, 22(1): 42–49. doi: 10.1016/j.tcb.2011.11.001
|
[95] |
Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99(3): 247–257. doi: 10.1016/S0092-8674(00)81656-6
|
[96] |
Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria[J]. Proc Natl Acad Sci U S A, 2011, 108(9): 3630–3635. doi: 10.1073/pnas.1012311108
|
[97] |
Felsenfeld G, Groudine M. Controlling the double helix[J]. Nature, 2003, 421(6921): 448–453. doi: 10.1038/nature01411
|
[98] |
Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain[J]. Science, 2009, 324(5929): 929–930. doi: 10.1126/science.1169786
|
[99] |
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930–935. doi: 10.1126/science.1170116
|
[100] |
Park YJ, Lee S, Lim S, et al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics[J]. Proc Natl Acad Sci U S A, 2021, 118(11): e2021073118. doi: 10.1073/pnas.2021073118
|
[101] |
Greer EL, Maures TJ, Hauswirth AG, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans[J]. Nature, 2010, 466(7304): 383–387. doi: 10.1038/nature09195
|
[102] |
Siebold AP, Banerjee R, Tie F, et al. Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 169–174. doi: 10.1073/pnas.0907739107
|
[103] |
Pietrocola F, Galluzzi L, Pedro JMBS, et al. Acetyl coenzyme A: a central metabolite and second messenger[J]. Cell Metabolism, 2015, 21(6): 805–821. doi: 10.1016/j.cmet.2015.05.014
|
[104] |
Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease[J]. EMBO Mol Med, 2014, 6(5): 580–589. doi: 10.1002/emmm.201303782
|
[105] |
Ambekar T, Pawar J, Rathod R, et al. Mitochondrial quality control: epigenetic signatures and therapeutic strategies[J]. Neurochem Int, 2021, 148: 105095. doi: 10.1016/j.neuint.2021.105095
|
[106] |
Dong Y, Yoshitomi T, Hu J, et al. Long noncoding RNAs coordinate functions between mitochondria and the nucleus[J]. Epigenetics Chromatin, 2017, 10(1): 41. doi: 10.1186/s13072-017-0149-x
|
[107] |
Li Y, Xu S, Xu D, et al. Pediatric pan-central nervous system tumor methylome analyses reveal immune-related LncRNAs[J]. Front Immunol, 2022, 13: 853904. doi: 10.3389/fimmu.2022.853904
|
[108] |
Zhao Y, Sun L, Wang RR, et al. The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: new players in an old arena[J]. Crit Rev Oncol Hematol, 2018, 131: 76–82. doi: 10.1016/j.critrevonc.2018.08.005
|
[109] |
Anand A, Pandi G. Noncoding RNA: an insight into chloroplast and mitochondrial gene expressions[J]. Life, 2021, 11(1): 49. doi: 10.3390/life11010049
|
[110] |
Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an antiaging paradigm[J]. Int Rev Cell Mol Biol, 2018, 340: 35–77. doi: 10.1016/bs.ircmb.2018.05.002
|
[111] |
English J, Son JM, Cardamone MD, et al. Decoding the rosetta stone of mitonuclear communication[J]. Pharmacol Res, 2020, 161: 105161. doi: 10.1016/j.phrs.2020.105161
|
[112] |
Rackham O, Shearwood AMJ, Mercer TR, et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins[J]. RNA, 2011, 17(12): 2085–2093. doi: 10.1261/rna.029405.111
|
[113] |
Xiang X, Fu Y, Zhao K, et al. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2[J]. Theranostics, 2021, 11(10): 4929–4944. doi: 10.7150/thno.55672
|
[114] |
Tai Y, Chen J, Tao Z, et al. Non-coding RNAs: new players in mitophagy and neurodegeneration[J]. Neurochem Int, 2022, 152: 105253. doi: 10.1016/j.neuint.2021.105253
|
[115] |
Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control[J]. Ageing Res Rev, 2011, 10(2): 205–215. doi: 10.1016/j.arr.2010.02.001
|
[116] |
Münch C. The different axes of the mammalian mitochondrial unfolded protein response[J]. BMC Biol, 2018, 16(1): 81. doi: 10.1186/s12915-018-0548-x
|
[117] |
Drake JC, Yan Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing[J]. J Physiol, 2017, 595(20): 6391–6399. doi: 10.1113/JP274337
|
[118] |
Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis[J]. Nature, 2011, 475(7356): 324–332. doi: 10.1038/nature10317
|
[119] |
Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182): 1069–1075. doi: 10.1038/nature06639
|
[120] |
Powers ET, Morimoto RI, Dillin A, et al. Biological and chemical approaches to diseases of proteostasis deficiency[J]. Annu Rev Biochem, 2009, 78: 959–991. doi: 10.1146/annurev.biochem.052308.114844
|
[121] |
Austriaco NR Jr. Review: to bud until death: the genetics of ageing in the yeast, Saccharomyces[J]. Yeast, 1996, 12(7): 623–630. doi: 10.1002/(SICI)1097-0061(19960615)12:7<623::AID-YEA968>3.0.CO;2-G
|
[122] |
Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J]. Dev Cell, 2009, 17(1): 87–97. doi: 10.1016/j.devcel.2009.06.013
|
[123] |
Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J]. Dev Cell, 2009, 17(1): 98–109. doi: 10.1016/j.devcel.2009.06.014
|
[124] |
Wang K, Klionsky DJ. Mitochondria removal by autophagy[J]. Autophagy, 2011, 7(3): 297–300. doi: 10.4161/auto.7.3.14502
|
[125] |
Schulz AM, Haynes CM. UPRmt-mediated cytoprotection and organismal aging[J]. Biochim Biophys Acta (BBA)-Bioenerg, 2015, 1847(11): 1448–1456. doi: 10.1016/j.bbabio.2015.03.008
|
[126] |
Tomaru U, Takahashi S, Ishizu A, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities[J]. Am J Pathol, 2012, 180(3): 963–972. doi: 10.1016/j.ajpath.2011.11.012
|
[127] |
Dorn II GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev, 2015, 29(19): 1981–1991. doi: 10.1101/gad.269894.115
|
[128] |
Weng H, Ma Y, Chen L, et al. A new vision of mitochondrial unfolded protein response to the sirtuin family[J]. Curr Neuropharmacol, 2020, 18(7): 613–623. doi: 10.2174/1570159X18666200123165002
|
[129] |
Potes Y, de Luxán-Delgado B, Rodriguez-González S, et al. Overweight in elderly people induces impaired autophagy in skeletal muscle[J]. Free Radic Biol Med, 2017, 110: 31–41. doi: 10.1016/j.freeradbiomed.2017.05.018
|
[130] |
Sakuma K, Kinoshita M, Ito Y, et al. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice[J]. J Cachexia, Sarcopenia Muscle, 2016, 7(2): 204–212. doi: 10.1002/jcsm.12045
|
[131] |
Billia F, Hauck L, Konecny F, et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function[J]. Proc Natl Acad Sci U S A, 2011, 108(23): 9572–9577. doi: 10.1073/pnas.1106291108
|
[132] |
Kubli DA, Zhang X, Lee Y, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction[J]. J Biol Chem, 2013, 288(2): 915–926. doi: 10.1074/jbc.M112.411363
|
[133] |
Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure[J]. Nature, 2012, 485(7397): 251–255. doi: 10.1038/nature10992
|
[134] |
de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging[J]. Bioinformatics, 2009, 25(7): 875–881. doi: 10.1093/bioinformatics/btp073
|