Citation: | Hamed Amini Amirkolaee, Hamid Amini Amirkolaee. Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion[J]. The Journal of Biomedical Research, 2022, 36(6): 409-422. doi: 10.7555/JBR.36.20220037 |
[1] |
Han X. MR-based synthetic CT generation using a deep convolutional neural network method[J]. Med Phys, 2017, 44(4): 1408–1419. doi: 10.1002/mp.12155
|
[2] |
Catana C, Van Der Kouwe A, Benner T, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype[J]. J Nucl Med, 2010, 51(9): 1431–1438. doi: 10.2967/jnumed.109.069112
|
[3] |
Chen Y, Juttukonda M, Su Y, et al. Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction[J]. Radiology, 2015, 275(2): 562–569. doi: 10.1148/radiol.14140810
|
[4] |
Uh J, Merchant TE, Li Y, et al. MRI-based treatment planning with pseudo CT generated through atlas registration[J]. Med Phys, 2014, 41(5): 051711. doi: 10.1118/1.4873315
|
[5] |
Keereman V, Fierens Y, Broux T, et al. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences[J]. J Nucl Med, 2010, 51(5): 812–818. doi: 10.2967/jnumed.109.065425
|
[6] |
Zheng W, Kim JP, Kadbi M, et al. Magnetic resonance–based automatic air segmentation for generation of synthetic computed tomography scans in the head region[J]. Int J Radiat Oncol Biol Phys, 2015, 93(3): 497–506. doi: 10.1016/j.ijrobp.2015.07.001
|
[7] |
Huynh T, Gao Y, Kang J, et al. Estimating CT image from MRI data using structured random forest and auto-context model[J]. IEEE Trans Med Imaging, 2016, 35(1): 174–183. doi: 10.1109/TMI.2015.2461533
|
[8] |
Zhong L, Lin L, Lu Z, et al. Predict CT image from MRI data using KNN-regression with learned local descriptors[C]//2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague: IEEE, 2016: 743–746.
|
[9] |
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: ACM, 2012: 1097–1105.
|
[10] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
[11] |
Nie D, Trullo R, Lian J, et al. Medical image synthesis with deep convolutional adversarial networks[J]. IEEE Trans Biomed Eng, 2018, 65(12): 2720–2730. doi: 10.1109/TBME.2018.2814538
|
[12] |
Dar SU, Yurt M, Karacan L, et al. Image synthesis in multi-contrast MRI with conditional generative adversarial networks[J]. IEEE Trans Med Imaging, 2019, 38(10): 2375–2388. doi: 10.1109/TMI.2019.2901750
|
[13] |
Kearney V, Ziemer BP, Perry A, et al. Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks[J]. Radiol Artif Intell, 2020, 2(2): e190027. doi: 10.1148/ryai.2020190027
|
[14] |
Upadhyay U, Chen Y, Hepp T, et al. Uncertainty-guided progressive GANs for medical image translation[C]//24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg: Springer, 2021: 614–624.
|
[15] |
Dalmaz O, Yurt M, Çukur T. ResViT: residual vision transformers for multi-modal medical image synthesis[EB/OL]. [2022-04-22]. https://ieeexplore.ieee.org/document/9758823/.
|
[16] |
Yang H, Sun J, Carass A, et al. Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN[C]//4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Granada: Springer, 2018: 174–182.
|
[17] |
Jin C, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data[J]. Sensors, 2019, 19(10): 2361. doi: 10.3390/s19102361
|
[18] |
Wolterink JM, Dinkla AM, Savenije MHF, et al. Deep MR to CT synthesis using unpaired data[C]//Second International Workshop on Simulation and Synthesis in Medical Imaging. Québec City: Springer, 2017: 14–23.
|
[19] |
Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242–2251.
|
[20] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431–3440.
|
[21] |
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[C]//4th International Conference on Learning Representations. San Juan: ICLR, 2016.
|
[22] |
Isola P, Zhu J, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5967–5976.
|
[23] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234–241.
|
[24] |
Rosasco L, De Vito E, Caponnetto A, et al. Are loss functions all the same?[J]. Neural Comput, 2004, 16(5): 1063–1076. doi: 10.1162/089976604773135104
|
[25] |
Mao X, Li Q, Xie H, et al. Least squares generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2813–2821.
|
[26] |
Borji A. Pros and cons of GAN evaluation measures[J]. Comput Vis Image Und, 2019, 179: 41–65. doi: 10.1016/j.cviu.2018.10.009
|
[27] |
Sheikh HR, Bovik AC. Image information and visual quality[J]. IEEE Trans Image Process, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378
|
[28] |
Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
|
[29] |
Li W, Li Y, Qin W, et al. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy[J]. Quant Imaging Med Surg, 2020, 10(6): 1223–1236. doi: 10.21037/qims-19-885
|
[30] |
Kong L, Lian C, Huang D, et al. Breaking the dilemma of medical image-to-image translation[C]//Proceedings of the 35th conference on Neural Information Processing Systems. Online: NIPS, 2021: 1964–1978.
|
[31] |
Tang H, Liu H, Xu D, et al. AttentionGAN: unpaired image-to-image translation using attention-guided generative adversarial networks[EB/OL]. [2021-09-02]. https://doi.org/10.1109/TNNLS.2021.3105725.
|
[32] |
Armanious K, Jiang C, Fischer M, et al. MedGAN: medical image translation using GANs[J]. Comput Med Imaging Graph, 2020, 79: 101684. doi: 10.1016/j.compmedimag.2019.101684
|
[33] |
Ben-Cohen A, Klang E, Raskin SP, et al. Virtual PET images from CT data using deep convolutional networks: initial results[C]//Second International Workshop on Simulation and Synthesis in Medical Imaging. Québec City: Springer, 2017: 49–57.
|
[34] |
Cui Y, Han S, Liu M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552–564. doi: 10.1002/jmri.27075
|
[35] |
Denck J, Guehring J, Maier A, et al. MR-contrast-aware image-to-image translations with generative adversarial networks[J]. Int J Comput Ass Radiol Surg, 2021, 16(12): 2069–2078. doi: 10.1007/s11548-021-02433-x
|
[36] |
Dinh PH. Multi-modal medical image fusion based on equilibrium optimizer algorithm and local energy functions[J]. Appl Intell, 2021, 51(11): 8416–8431. doi: 10.1007/s10489-021-02282-w
|
[37] |
Wolterink JM, Leiner T, Viergever MA, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Trans Med Imaging, 2017, 36(12): 2536–2545. doi: 10.1109/TMI.2017.2708987
|
[38] |
Florkow MC, Zijlstra F, Willemsen K, et al. Deep learning–based MR-to-CT synthesis: the influence of varying gradient echo–based MR images as input channels[J]. Magn Reson Med, 2020, 83(4): 1429–1441. doi: 10.1002/mrm.28008
|
[39] |
Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy[J]. J Radiat Res, 2020, 61(1): 92–103. doi: 10.1093/jrr/rrz063
|
[40] |
Liu Y, Lei Y, Wang T, et al. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy[J]. Med Phys, 2020, 47(6): 2472–2483. doi: 10.1002/mp.14121
|
[41] |
Qi M, Li Y, Wu A, et al. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy[J]. Med Phys, 2020, 47(4): 1880–1894. doi: 10.1002/mp.14075
|
[42] |
Tie X, Lam SK, Zhang Y, et al. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients[J]. Med Phys, 2020, 47(4): 1750–1762. doi: 10.1002/mp.14062
|
[43] |
Gozes O, Greenspan H. Bone structures extraction and enhancement in chest radiographs via CNN trained on synthetic data[C]//2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Iowa City: IEEE, 2020: 858–861.
|
[44] |
Yuan N, Dyer B, Rao S, et al. Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy[J]. Phys Med Biol, 2020, 65(3): 035003. doi: 10.1088/1361-6560/ab6240
|