• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Haoran Jia, Tianwu Xie. Tracers progress for positron emission tomography imaging of glial-related disease[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220017
Citation: Haoran Jia, Tianwu Xie. Tracers progress for positron emission tomography imaging of glial-related disease[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220017

Tracers progress for positron emission tomography imaging of glial-related disease

doi: 10.7555/JBR.36.20220017
More Information
  • Corresponding author: Tianwu Xie, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Tel: +86-21-6404-8363, E-mail: tianwuxie@fudan.edu.cn
  • Received: 2022-01-23
  • Revised: 2022-04-23
  • Accepted: 2022-05-24
  • Published: 2022-06-28
  • Glial cells play an essential part of neuron system. They can not only serve as structural blocks in human brain, but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, and Huntington disease, as well as glioma, epilepsy, ischemic stroke and infections. Positron emission tomography is a functional imaging technique providing molecular-level information before anatomic changes are visible and have been widely used in many above-mentioned diseases. In this review, we focus on the positron emission tomography tracers used in pathologies related to glial cells, such as glioma, Alzheimer's disease, and neuroinflammation.


  • loading
  • [1]
    Von Bartheld CS. Myths and truths about the cellular composition of the human brain: a review of influential concepts[J]. J Chem Neuroanat, 2018, 93: 2–15. doi: 10.1016/j.jchemneu.2017.08.004
    Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution[J]. Glia, 2014, 62(9): 1377–1391. doi: 10.1002/glia.22683
    Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation[J]. Front Cell Neurosci, 2017, 11: 24.
    Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367–402. doi: 10.1146/annurev-immunol-032713-120240
    Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: role and functions in brain pathologies[J]. Front Pharmacol, 2019, 10: 1114. doi: 10.3389/fphar.2019.01114
    Disabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details[J]. J Neurochem, 2016, 139(S2): 136–153.
    Mantovani A, Sica A, Locati M. Macrophage polarization comes of age[J]. Immunity, 2005, 23(4): 344–346. doi: 10.1016/j.immuni.2005.10.001
    Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18): 6391–6410. doi: 10.1523/JNEUROSCI.6221-11.2012
    Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation: the role and consequences[J]. Neurosci Res, 2014, 79: 1–12. doi: 10.1016/j.neures.2013.10.004
    Pandey R, Caflisch L, Lodi A, et al. Metabolomic signature of brain cancer[J]. Mol Carcinog, 2017, 56(11): 2355–2371. doi: 10.1002/mc.22694
    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803–820. doi: 10.1007/s00401-016-1545-1
    Walker C, Baborie A, Crooks D, et al. Biology, genetics and imaging of glial cell tumours[J]. Br J Radiol, 2011, 84(S2): S90–S106.
    Santoro A, Mattace Raso G, Taliani S, et al. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis[J]. Eur J Pharm Sci, 2016, 88: 124–131. doi: 10.1016/j.ejps.2016.04.006
    Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development[J]. Pharmacol Ther, 2006, 110(3): 503–524. doi: 10.1016/j.pharmthera.2005.09.007
    Hauet T, Yao Z, Bose HS, et al. Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria[J]. Mol Endocrinol, 2005, 19(2): 540–554. doi: 10.1210/me.2004-0307
    O’Hara MF, Nibbio BJ, Craig RC, et al. Mitochondrial benzodiazepine receptors regulate oxygen homeostasis in the early mouse embryo[J]. Reprod Toxicol, 2003, 17(4): 365–375. doi: 10.1016/S0890-6238(03)00035-2
    Larcher JC, Vayssiere JL, Le Marquer FJ, et al. Effects of peripheral benzodiazepines upon the O2 consumption of neuroblastoma cells[J]. Eur J Pharmacol, 1989, 161(2-3): 197–202. doi: 10.1016/0014-2999(89)90843-1
    Jain P, Chaney AM, Carlson ML, et al. Neuroinflammation PET imaging: current opinion and future directions[J]. J Nucl Med, 2020, 61(8): 1107–1112. doi: 10.2967/jnumed.119.229443
    Nutma E, Ceyzériat K, Amor S, et al. Cellular sources of TSPO expression in healthy and diseased brain[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 146–163. doi: 10.1007/s00259-020-05166-2
    Camsonne R, Crouzel C, Comar D, et al. Synthesis of N-(11C) methyl, N-(methyl-1 propyl), (chloro-2 phenyl)-1 isoquinoleine carboxamide-3 (PK 11195): a new ligand for peripheral benzodiazepine receptors[J]. J Label Compd Radiopharm, 1984, 21(10): 985–991. doi: 10.1002/jlcr.2580211012
    Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia[J]. Lancet, 2001, 358(9280): 461–467. doi: 10.1016/S0140-6736(01)05625-2
    Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson's disease[J]. Ann Neurol, 2005, 57(2): 168–175. doi: 10.1002/ana.20338
    De Souza AM, Pitombeira MS, De Souza LE, et al. 11C-PK11195 plasma metabolization has the same rate in multiple sclerosis patients and healthy controls: a cross-sectional study[J]. Neural Regen Res, 2021, 16(12): 2494–2498. doi: 10.4103/1673-5374.313062
    Jučaite A, Cselényi Z, Arvidsson A, et al. Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain-a PET study in control subjects[J]. EJNMMI Res, 2012, 2: 15. doi: 10.1186/2191-219X-2-15
    Parente A, Feltes PK, Vallez García D, et al. Pharmacokinetic analysis of 11C-PBR28 in the rat model of herpes encephalitis: comparison with (R)-11C-PK11195[J]. J Nucl Med, 2016, 57(5): 785–791. doi: 10.2967/jnumed.115.165019
    James ML, Fulton RR, Henderson DJ, et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand[J]. Bioorg Med Chem, 2005, 13(22): 6188–6194. doi: 10.1016/j.bmc.2005.06.030
    Boutin H, Chauveau F, Thominiaux C, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation[J]. J Nucl Med, 2007, 48(4): 573–581. doi: 10.2967/jnumed.106.036764
    Endres CJ, Pomper MG, James M, et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans[J]. J Nucl Med, 2009, 50(8): 1276–1282. doi: 10.2967/jnumed.109.062265
    Yasuno F, Kimura Y, Ogata A, et al. Kinetic modeling and non-invasive approach for translocator protein quantification with 11C-DPA-713[J]. Nucl Med Biol, 2022, 108–109: 76–84.
    Akerele MI, Zein SA, Pandya S, et al. Population-based input function for TSPO quantification and kinetic modeling with [11C]-DPA-713[J]. EJNMMI Phys, 2021, 8(1): 39. doi: 10.1186/s40658-021-00381-8
    Sarda-Mantel L, Alsac JM, Boisgard R, et al. Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and 18F-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms[J]. J Vasc Surg, 2012, 56(3): 765–773. doi: 10.1016/j.jvs.2012.01.069
    Kaneko KI, Irie S, Mawatari A, et al. [18F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2265–2275. doi: 10.1007/s00259-022-05719-7
    Tang D, McKinley ET, Hight MR, et al. Synthesis and structure-activity relationships of 5, 6, 7-substituted pyrazolopyrimidines: discovery of a novel TSPO PET ligand for cancer imaging[J]. J Med Chem, 2013, 56(8): 3429–3433. doi: 10.1021/jm4001874
    Li J, Smith JA, Dawson ES, et al. Optimized translocator protein ligand for optical molecular imaging and screening[J]. Bioconjugate Chem, 2017, 28(4): 1016–1023. doi: 10.1021/acs.bioconjchem.6b00711
    Okubo T, Yoshikawa R, Chaki S, et al. Design, synthesis and structure–affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands[J]. Bioorg Med Chem, 2004, 12(2): 423–438. doi: 10.1016/j.bmc.2003.10.050
    Briard E, Zoghbi SS, Imaizumi M, et al. Synthesis and evaluation in monkey of two sensitive 11C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo[J]. J Med Chem, 2008, 51(1): 17–30. doi: 10.1021/jm0707370
    Kreisl WC, Fujita M, Fujimura Y, et al. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker[J]. Neuroimage, 2010, 49(4): 2924–2932. doi: 10.1016/j.neuroimage.2009.11.056
    Nair A, Veronese M, Xu X, et al. Test-retest analysis of a non-invasive method of quantifying [11C]-PBR28 binding in Alzheimer's disease[J]. EJNMMI Res, 2016, 6(1): 72. doi: 10.1186/s13550-016-0226-3
    Schaechter JD, Hightower BG, Kim M, et al. A pilot [11C]PBR28 PET/MRI study of neuroinflammation and neurodegeneration in chronic stroke patients[J]. Brain Behav Immun Health, 2021, 17: 100336. doi: 10.1016/j.bbih.2021.100336
    Pascual B, Funk Q, Zanotti-Fregonara P, et al. Neuroinflammation is highest in areas of disease progression in semantic dementia[J]. Brain, 2021, 144(5): 1565–1575. doi: 10.1093/brain/awab057
    Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28[J]. J Cereb Blood Flow Metab, 2012, 32(1): 1–5. doi: 10.1038/jcbfm.2011.147
    Zanotti-Fregonara P, Zhang Y, Jenko KJ, et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971[J]. ACS Chem Neurosci, 2014, 5(10): 963–971. doi: 10.1021/cn500138n
    Ikawa M, Lohith TG, Shrestha S, et al. 11C-ER176, a Radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain[J]. J Nucl Med, 2017, 58(2): 320–325. doi: 10.2967/jnumed.116.178996
    Fujita M, Kobayashi M, Ikawa M, et al. Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios[J]. EJNMMI Res, 2017, 7(1): 84. doi: 10.1186/s13550-017-0334-8
    Rocha NP, Charron O, Latham LB, et al. Microglia activation in basal ganglia is a late event in huntington disease pathophysiology[J]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(3): e984. doi: 10.1212/NXI.0000000000000984
    Boutin H, Murray K, Pradillo J, et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke[J]. Eur J Nucl Med Mol Imaging, 2015, 42(3): 503–511. doi: 10.1007/s00259-014-2939-8
    Vettermann FJ, Harris S, Schmitt J, et al. Impact of TSPO receptor polymorphism on [18F]GE-180 binding in healthy brain and pseudo-reference regions of neurooncological and neurodegenerative disorders[J]. Life (Basel), 2021, 11(6): 484.
    Zanotti-Fregonara P, Pascual B, Rostomily RC, et al. Anatomy of 18F-GE180, a failed radioligand for the TSPO protein[J]. Eur J Nucl Med Mol Imaging, 2020, 47(10): 2233–2236. doi: 10.1007/s00259-020-04732-y
    Lammertsma AA, Bench CJ, Price GW, et al. Measurement of cerebral monoamine oxidase B activity using L-[11C]deprenyl and dynamic positron emission tomography[J]. J Cereb Blood Flow Metab, 1991, 11(4): 545–556. doi: 10.1038/jcbfm.1991.103
    Gulyás B, Pavlova E, Kása P, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography[J]. Neurochem Int, 2011, 58(1): 60–68. doi: 10.1016/j.neuint.2010.10.013
    Mixdorf JC, Murali D, Xin Y, et al. Alternative strategies for the synthesis of [11C]ER176 for PET imaging of neuroinflammation[J]. Appl Radiat Isot, 2021, 178: 109954. doi: 10.1016/j.apradiso.2021.109954
    Lee JH, Simeon FG, Liow JS, et al. In vivo evaluation of six analogs of 11C-ER176 as candidate 18F-labeled radioligands for translocator protein 18 kDa (TSPO)[EB/OL]. J Nucl Med, [2022-01-13].https://jnm.snmjournals.org/content/early/2022/01/13/jnumed.121.263168.
    Narayanaswami V, Dahl K, Bernard-Gauthier V, et al. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO[J]. Mol Imaging, 2018, 17: 1536012118792317.
    Van Weehaeghe D, Van Schoor E, De Vocht J, et al. TSPO versus P2X7 as a target for neuroinflammation: an in vitro and in vivo study[J]. J Nucl Med, 2020, 61(4): 604–607. doi: 10.2967/jnumed.119.231985
    Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas[J]. Br J Radiol, 2011, 84(S2): S107–S111.
    Langen KJ, Galldiks N, Hattingen E, et al. Advances in neuro-oncology imaging[J]. Nat Rev Neurol, 2017, 13(5): 279–289. doi: 10.1038/nrneurol.2017.44
    Rosenfeld SS, Hoffman JM, Coleman RE, et al. Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography[J]. J Nucl Med, 1992, 33(4): 532–536.
    Kosaka N, Tsuchida T, Uematsu H, et al. 18F-FDG PET of common enhancing malignant brain tumors[J]. AJR Am J Roentgenol, 2008, 190(6): W365–W369. doi: 10.2214/AJR.07.2660
    Omuro AMP, Leite CC, Mokhtari K, et al. Pitfalls in the diagnosis of brain tumours[J]. Lancet Neurol, 2006, 5(11): 937–948. doi: 10.1016/S1474-4422(06)70597-X
    Chung JK, Kim YK, Kim SK, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET[J]. Eur J Nucl Med Mol Imaging, 2002, 29(2): 176–182. doi: 10.1007/s00259-001-0690-4
    Galldiks N, Langen KJ. Applications of PET imaging of neurological tumors with radiolabeled amino acids[J]. Quart J Nucl Med Mol Imaging, 2015, 59(1): 70–82.
    Långström B, Antoni G, Gullberg P, et al. Synthesis of L- and D-[methyl-11C]methionine[J]. J Nucl Med, 1987, 28(6): 1037–1040.
    Singhal T, Narayanan TK, Jain V, et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas[J]. Mol Imaging Biol, 2008, 10(1): 1–18. doi: 10.1007/s11307-007-0115-2
    Deuschl C, Kirchner J, Poeppel TD, et al. 11C–MET PET/MRI for detection of recurrent glioma[J]. Eur J Nucl Med Mol Imaging, 2018, 45(4): 593–601. doi: 10.1007/s00259-017-3916-9
    Glaudemans AWJW, Enting RH, Heesters MAAM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases[J]. Eur J Nucl Med Mol Imaging, 2013, 40(4): 615–635. doi: 10.1007/s00259-012-2295-5
    De Zwart PL, Van Dijken BR J, Holtman GA, et al. Diagnostic accuracy of PET tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: a systematic review and metaanalysis[J]. J Nucl Med, 2020, 61(4): 498–504. doi: 10.2967/jnumed.119.233809
    Grosu AL, Astner ST, Riedel E, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases[J]. Int J Radiat Oncol Biol Phys, 2011, 81(4): 1049–1058. doi: 10.1016/j.ijrobp.2010.07.002
    Yang Y, He MZ, Li T, et al. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis[J]. Neurosurg Rev, 2019, 42(2): 185–195. doi: 10.1007/s10143-017-0906-0
    Weckesser M, Langen KJ, Rickert CH, et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours[J]. Eur J Nucl Med Mol Imaging, 2005, 32(4): 422–429. doi: 10.1007/s00259-004-1705-8
    Pöpperl G, Kreth FW, Herms J, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?[J]. J Nucl Med, 2006, 47(3): 393–403.
    Moulin-Romsee G, D'hondt E, De Groot T, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine?[J]. Eur J Nucl Med Mol Imaging, 2007, 34(12): 2082–2087. doi: 10.1007/s00259-007-0557-4
    Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors[J]. Neuro-Oncol, 2014, 16(3): 434–440. doi: 10.1093/neuonc/not199
    Xiao J, Jin Y, Nie J, et al. Diagnostic and grading accuracy of 18F-FDOPA PET and PET/CT in patients with gliomas: a systematic review and meta-analysis[J]. BMC Cancer, 2019, 19(1): 767. doi: 10.1186/s12885-019-5938-0
    Becherer A, Karanikas G, Szabó M, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine[J]. Eur J Nucl Med Mol Imaging, 2003, 30(11): 1561–1567. doi: 10.1007/s00259-003-1259-1
    Fueger BJ, Czernin J, Cloughesy T, et al. Correlation of 6–18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas[J]. J Nucl Med, 2010, 51(10): 1532–1538. doi: 10.2967/jnumed.110.078592
    Janvier L, Olivier P, Blonski M, et al. Correlation of SUV-derived indices with tumoral aggressiveness of gliomas in static 18F-FDOPA PET: use in clinical practice[J]. Clin Nucl Med, 2015, 40(9): e429–e435. doi: 10.1097/RLU.0000000000000897
    Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography[J]. Nat Med, 1998, 4(11): 1334–1336. doi: 10.1038/3337
    Hong IK, Kim JH, Ra YS, et al. Diagnostic usefulness of 3’-Deoxy-3’-[18F]Fluorothymidine positron emission tomography in recurrent brain tumor[J]. J Comput Assist Tomogr, 2011, 35(6): 679–684. doi: 10.1097/RCT.0b013e3182345b0e
    Enslow MS, Zollinger LV, Morton KA, et al. Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma[J]. Clin Nucl Med, 2012, 37(9): 854–861. doi: 10.1097/RLU.0b013e318262c76a
    Shishido H, Kawai N, Miyake K, et al. Diagnostic value of 11C-methionine (MET) and 18F-fluorothymidine (FLT) positron emission tomography in recurrent high-grade gliomas; differentiation from treatment-induced tissue necrosis[J]. Cancers (Basel), 2012, 4(1): 244–256. doi: 10.3390/cancers4010244
    Weber MA, Henze M, Tüttenberg J, et al. Biopsy targeting gliomas: do functional imaging techniques identify similar target areas?[J]. Invest Radiol, 2010, 45(12): 755–768. doi: 10.1097/RLI.0b013e3181ec9db0
    Nowosielski M, Difranco MD, Putzer D, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas[J]. PLoS One, 2014, 9(4): e95830. doi: 10.1371/journal.pone.0095830
    Mertens K, Slaets D, Lambert B, et al. PET with 18F-labelled choline-based tracers for tumour imaging: a review of the literature[J]. Eur J Nucl Med Mol Imaging, 2010, 37(11): 2188–2193. doi: 10.1007/s00259-010-1496-z
    Ito K, Yokoyama J, Kubota K, et al. Comparison of 18F-FDG and 11C-choline PET/CT for detecting recurrences in patients with nonsquamous cell head and neck malignancies[J]. Nucl Med Commun, 2010, 31(11): 931–937. doi: 10.1097/MNM.0b013e32833f3921
    Kato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography[J]. AJNR Am J Neuroradiol, 2008, 29(6): 1176–1182. doi: 10.3174/ajnr.A1008
    Hara T, Kondo T, Hara T, et al. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas[J]. J Neurosurg, 2003, 99(3): 474–479. doi: 10.3171/jns.2003.99.3.0474
    Montes A, Fernández A, Camacho V, et al. The usefulness of 18F-fluorocholine PET/CT in the detection of recurrence of central nervous system primary neoplasms[J]. Rev Esp Med Nucl Imagen Mol, 2017, 36(4): 227–232.
    Gao L, Xu W, Li T, et al. Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: a systematic review and meta-analysis[J]. Medicine (Baltimore), 2018, 97(29): e11556. doi: 10.1097/MD.0000000000011556
    Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response[J]. Nat Rev Cancer, 2008, 8(6): 425–437. doi: 10.1038/nrc2397
    Gerstner ER, Zhang Z, Fink JR, et al. ACRIN 6684: assessment of tumor hypoxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI[J]. Clin Cancer Res, 2016, 22(20): 5079–5086. doi: 10.1158/1078-0432.CCR-15-2529
    Reeves KM, Song PN, Angermeier A, et al. 18F-FMISO PET imaging identifies hypoxia and immunosuppressive tumor microenvironments and guides targeted evofosfamide therapy in tumors refractory to PD-1 and CTLA-4 inhibition[J]. Clin Cancer Res, 2022, 28(2): 327–337. doi: 10.1158/1078-0432.CCR-21-2394
    Parent EE, Benayoun M, Ibeanu I, et al. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas[J]. EJNMMI Res, 2018, 8(1): 67. doi: 10.1186/s13550-018-0415-3
    Sörensen J, Owenius R, Lax M, et al. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2013, 40(3): 394–402. doi: 10.1007/s00259-012-2291-9
    Kondo A, Ishii H, Aoki S, et al. Phase IIa clinical study of[18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors[J]. Ann Nucl Med, 2016, 30(9): 608–618. doi: 10.1007/s12149-016-1102-y
    Wakabayashi T, Iuchi T, Tsuyuguchi N, et al. Diagnostic performance and safety of positron emission tomography using 18F-Fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial[J]. Asia Ocean J Nucl Med Biol, 2017, 5(1): 10–21.
    Wakabayashi T, Hirose Y, Miyake K, et al. Determining the extent of tumor resection at surgical planning with 18F-fluciclovine PET/CT in patients with suspected glioma: multicenter phase III trials[J]. Ann Nucl Med, 2021, 35(12): 1279–1292. doi: 10.1007/s12149-021-01670-z
    Mashimo T, Pichumani K, Vemireddy V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases[J]. Cell, 2014, 159(7): 1603–1614. doi: 10.1016/j.cell.2014.11.025
    Yoshii Y, Furukawa T, Saga T, et al. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application[J]. Cancer Lett, 2015, 356(2 Pt A): 211–216.
    Liu RS, Chang C, Chu LS, et al. PET imaging of brain astrocytoma with 1–11C-acetate[J]. Eur J Nucl Med Mol Imaging, 2006, 33(4): 420–427. doi: 10.1007/s00259-005-0023-0
    Tsuchida T, Takeuchi H, Okazawa H, et al. Grading of brain glioma with 1–11C-acetate PET: comparison with 18F-FDG PET[J]. Nucl Med Biol, 2008, 35(2): 171–176. doi: 10.1016/j.nucmedbio.2007.11.004
    Dienel GA, Popp D, Drew PD, et al. Preferential labeling of glial and meningial brain tumors with [2-14C]Acetate[J]. J Nucl Med, 2001, 42(8): 1243–1250.
    Marik J, Ogasawara A, Martin-Mcnulty B, et al. PET of glial metabolism using 2–18F-fluoroacetate[J]. J Nucl Med, 2009, 50(6): 982–990. doi: 10.2967/jnumed.108.057356
    Vassileva V, Braga M, Barnes C, et al. Effective detection and monitoring of glioma using [18F]FPIA PET imaging[J]. Biomedicines, 2021, 9(7): 811. doi: 10.3390/biomedicines9070811
    Chin FT, Shen B, Liu S, et al. First experience with clinical-grade [18F]FPP(RGD)2: an automated multi-step radiosynthesis for clinical PET studies[J]. Mol Imaging Biol, 2012, 14(1): 88–95. doi: 10.1007/s11307-011-0477-3
    Iagaru A, Mosci C, Mittra E, et al. Glioblastoma multiforme recurrence: an exploratory study of 18F FPPRGD2 PET/CT[J]. Radiology, 2015, 277(2): 497–506. doi: 10.1148/radiol.2015141550
    Minamimoto R, Jamali M, Barkhodari A, et al. Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements[J]. Eur J Nucl Med Mol Imaging, 2015, 42(12): 1850–1858. doi: 10.1007/s00259-015-3096-4
    Albert NL, Weller M, Suchorska B, et al. Response assessment in Neuro-oncology working group and European association for Neuro-oncology recommendations for the clinical use of PET imaging in gliomas[J]. Neuro Oncol, 2016, 18(9): 1199–1208. doi: 10.1093/neuonc/now058
    Lin J, Chuang CP, Lin J, et al. Rational design, pharmacomodulation, and synthesis of [68Ga]Ga-Alb-FAPtp-01, a selective tumor-associated fibroblast activation protein tracer for PET imaging of Glioma[J]. ACS Sens, 2021, 6(9): 3424–3435. doi: 10.1021/acssensors.1c01316
    Foster A, Nigam S, Tatum DS, et al. Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma[J]. EBioMedicine, 2021, 71: 103571. doi: 10.1016/j.ebiom.2021.103571
    Alzheimer's Association. 2018 Alzheimer's disease facts and figures[J]. Alzheimer's Dement, 2018, 14(3): 367–429. doi: 10.1016/j.jalz.2018.02.001
    Patterson C. World Alzheimer report 2018: the state of the art of dementia research: new frontiers[M]. London: Alzheimer’s Disease International, 2018.
    Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment[J]. Molecules, 2020, 25(24): 5789. doi: 10.3390/molecules25245789
    Filippi L, Chiaravalloti A, Bagni O, et al. 18F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer's disease[J]. Am J Nucl Med Mol Imaging, 2018, 8(4): 268–281.
    Beach TG. A review of biomarkers for neurodegenerative disease: will they swing us across the valley?[J]. Neurol Ther, 2017, 6(S1): 5–13. doi: 10.1007/s40120-017-0072-x
    Gu L, Guo Z. Alzheimer's Aβ42 and Aβ40 peptides form interlaced amyloid fibrils[J]. J Neurochem, 2013, 126(3): 305–311. doi: 10.1111/jnc.12202
    Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity[J]. J Alzheimers Dis, 2013, 33(S1): S67–S78.
    Hu WT, Watts KD, Shaw LM, et al. CSF beta-amyloid 1–42 - what are we measuring in Alzheimer's disease?[J]. Ann Clin Transl Neurol, 2015, 2(2): 131–139. doi: 10.1002/acn3.160
    Uzuegbunam BC, Librizzi D, Hooshyar Yousefi B. PET radiopharmaceuticals for Alzheimer's disease and Parkinson's disease diagnosis, the current and future landscape[J]. Molecules, 2020, 25(4): 977. doi: 10.3390/molecules25040977
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B[J]. Ann Neurol, 2004, 55(3): 306–319. doi: 10.1002/ana.20009
    Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment[J]. Neurobiol Aging, 2008, 29(10): 1456–1465. doi: 10.1016/j.neurobiolaging.2007.03.029
    Okello A, Koivunen J, Edison P, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study[J]. Neurology, 2009, 73(10): 754–760. doi: 10.1212/WNL.0b013e3181b23564
    Jack CR JR, Wiste HJ, Vemuri P, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease[J]. Brain, 2010, 133(11): 3336–3348. doi: 10.1093/brain/awq277
    Kemppainen NM, Scheinin NM, Koivunen J, et al. Five-year follow-up of 11C-PIB uptake in Alzheimer's disease and MCI[J]. Eur J Nucl Med Mol Imaging, 2014, 41(2): 283–289. doi: 10.1007/s00259-013-2562-0
    Mathis CA, Ikonomovic MD, Debnath ML, et al. Comparison of the binding of 3′-F-PiB and PiB in human brain homogenates[J]. NeuroImage, 2008, 41(S2): T113–T114.
    Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial[J]. Ann Neurol, 2010, 68(3): 319–329. doi: 10.1002/ana.22068
    Juréus A, Swahn BM, Sandell J, et al. Characterization of AZD4694, a novel fluorinated Aβ plaque neuroimaging PET radioligand[J]. J Neurochem, 2010, 114(3): 784–794. doi: 10.1111/j.1471-4159.2010.06812.x
    Verhoeff NPLG, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with[11C] SB-13 PET[J]. Am J Geriatr Psychiatry, 2004, 12(6): 584–595.
    Johnson AE, Jeppsson F, Sandell J, et al. AZD2184: a radioligand for sensitive detection of β-amyloid deposits[J]. J Neurochem, 2009, 108(5): 1177–1186. doi: 10.1111/j.1471-4159.2008.05861.x
    Nyberg S, Jönhagen ME, Cselényi Z, et al. Detection of amyloid in Alzheimer's disease with positron emission tomography using [11C]AZD2184[J]. Eur J Nucl Med Mol Imaging, 2009, 36(11): 1859–1863. doi: 10.1007/s00259-009-1182-1
    Cselényi Z, Jönhagen ME, Forsberg A, et al. Clinical validation of 18F-AZD4694, an amyloid-β–specific PET radioligand[J]. J Nucl Med, 2012, 53(3): 415–424. doi: 10.2967/jnumed.111.094029
    Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia[J]. J Nucl Med, 2013, 54(6): 880–886. doi: 10.2967/jnumed.112.114785
    Giannakopoulos P, Herrmann FR, Bussière T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease[J]. Neurology, 2003, 60(9): 1495–1500. doi: 10.1212/01.WNL.0000063311.58879.01
    Van Rossum IA, Visser PJ, Knol DL, et al. Injury markers but not amyloid markers are associated with rapid progression from mild cognitive impairment to dementia in Alzheimer's disease[J]. J Alzheimers Dis, 2012, 29(2): 319–327. doi: 10.3233/JAD-2011-111694
    Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment[J]. N Engl J Med, 2006, 355(25): 2652–2663. doi: 10.1056/NEJMoa054625
    Thompson PW, Ye L, Morgenstern JL, et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer's disease pathologies[J]. J Neurochem, 2009, 109(2): 623–630. doi: 10.1111/j.1471-4159.2009.05996.x
    Okamura N, Suemoto T, Furumoto S, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease[J]. J Neurosci, 2005, 25(47): 10857–1062. doi: 10.1523/JNEUROSCI.1738-05.2005
    Fodero-Tavoletti MT, Okamura N, Furumoto S, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease[J]. Brain, 2011, 134(Pt 4): 1089–1100.
    Okamura N, Furumoto S, Harada R, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease[J]. J Nucl Med, 2013, 54(8): 1420–1427. doi: 10.2967/jnumed.112.117341
    Harada R, Okamura N, Furumoto S, et al. Characteristics of tau and its ligands in PET imaging[J]. Biomolecules, 2016, 6(1): 7. doi: 10.3390/biom6010007
    Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease[J]. J Nucl Med, 2016, 57(2): 208–214. doi: 10.2967/jnumed.115.164848
    Xia C, Arteaga J, Chen G, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease[J]. Alzheimers Dement, 2013, 9(6): 666–676. doi: 10.1016/j.jalz.2012.11.008
    Chhatwal JP, Schultz AP, Marshall GA, et al. Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly[J]. Neurology, 2016, 87(9): 920–926. doi: 10.1212/WNL.0000000000003050
    Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease[J]. Ann Neurol, 2016, 79(1): 110–119. doi: 10.1002/ana.24546
    Vermeiren C, Motte P, Viot D, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases[J]. Mov Disord, 2018, 33(2): 273–281. doi: 10.1002/mds.27271
    Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron, 2013, 79(6): 1094–1108. doi: 10.1016/j.neuron.2013.07.037
    Kolb HC, Andrés JI. Tau positron emission tomography imaging[J]. Cold Spring Harb Perspect Biol, 2017, 9(5): a023721. doi: 10.1101/cshperspect.a023721
    Sanabria Bohórquez S, Marik J, Ogasawara A, et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2077–2089. doi: 10.1007/s00259-019-04399-0
    Wong DF, Comley RA, Kuwabara H, et al. Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in Alzheimer subjects[J]. J Nucl Med, 2018, 59(12): 1869–1876. doi: 10.2967/jnumed.118.209916
    Kroth H, Oden F, Molette J, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2178–2189. doi: 10.1007/s00259-019-04397-2
    Shi Y, Murzin AG, Falcon B, et al. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607[J]. Acta Neuropathol, 2021, 141(5): 697–708. doi: 10.1007/s00401-021-02294-3
    Hsu JL, Lin KJ, Hsiao IT, et al. The imaging features and clinical Associations of a novel tau PET tracer-18F-APN1607 in Alzheimer disease[J]. Clin Nucl Med, 2020, 45(10): 747–756. doi: 10.1097/RLU.0000000000003164
    Walji AM, Hostetler ED, Selnick H, et al. Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2, 3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): A positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs)[J]. J Med Chem, 2016, 59(10): 4778–4789. doi: 10.1021/acs.jmedchem.6b00166
    Betthauser TJ, Cody KA, Zammit MD, et al. In vivo characterization and quantification of neurofibrillary tau PET Radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls[J]. J Nucl Med, 2019, 60(1): 93–99. doi: 10.2967/jnumed.118.209650
    Rombouts FJR, Andrés JI, Ariza M, et al. Discovery of N-(Pyridin-4-yl)-1, 5-naphthyridin-2-amines as potential tau pathology PET tracers for Alzheimer's disease[J]. J Med Chem, 2017, 60(4): 1272–1291. doi: 10.1021/acs.jmedchem.6b01173
    Declercq L, Rombouts F, Koole M, et al. Preclinical evaluation of 18F-JNJ64349311, a Novel PET tracer for tau imaging[J]. J Nucl Med, 2017, 58(6): 975–981. doi: 10.2967/jnumed.116.185199
    Ehman EC, Johnson GB, Villanueva-Meyer JE, et al. PET/MRI: where might it replace PET/CT?[J]. J Magn Reson Imaging, 2017, 46(5): 1247–1262. doi: 10.1002/jmri.25711
    Mainta IC, Vargas MI, Trombella S, et al. Hybrid PET-MRI in Alzheimer's disease research[M]//Perneczky R. Biomarkers for Alzheimer’s Disease Drug Development. New York: Humana Press, 2018: 185–200.
    Zhang M, Ni Y, Zhou Q, et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: a longitudinal study[J]. eClinicalMedicine, 2021, 37: 100982. doi: 10.1016/j.eclinm.2021.100982
    Zhang M, Sun W, Guan Z, et al. Simultaneous PET/fMRI detects distinctive alterations in functional connectivity and glucose metabolism of Precuneus Subregions in Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 737002. doi: 10.3389/fnagi.2021.737002
    Jabeen S, Arbind A, Kumar D, et al. Combined amino acid PET-MRI for identifying recurrence in post-treatment gliomas: together we grow[J]. Eur J Hybrid Imaging, 2021, 5(1): 15. doi: 10.1186/s41824-021-00109-y
    Johannessen K, Berntsen EM, Johansen H, et al. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report[J]. Eur J Hybrid Imaging, 2021, 5(1): 7. doi: 10.1186/s41824-021-00101-6
    Bertaux M, Berenbaum A, Di Stefano AL, et al. Hybrid[18F]-F-DOPA PET/MRI interpretation criteria and scores for Glioma follow-up after radiotherapy[J]. Clin Neuroradiol, 2022,doi: 10.1007/s00062-022-01139-0.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (37) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint