• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Hui Li, Yang Chen, Jianqin Niu, Chenju Yi. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220016
Citation: Hui Li, Yang Chen, Jianqin Niu, Chenju Yi. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220016

New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases

doi: 10.7555/JBR.36.20220016
More Information
  • Oligodendrocyte lineage cells (OL-lineage cells) are a cell population that are crucial for mammalian central nervous system (CNS) myelination. OL-lineage cells go through developmental stages, initially differentiating into oligodendrocyte precursor cells (OPCs), before becoming immature oligodendrocytes, then mature oligodendrocytes (OLs). While the main function of cell lineage is in myelin formation, and increasing number of studies have turned to explore the immunological characteristics of these cells. Initially, these studies focused on discovering how OPCs and OLs are affected by the immune system, and then, how these immunological changes influence the myelination process. However, recent studies have uncovered another feature of OL-lineage cells in our immune systems. It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation, and the expression of these factors changes under various pathologic conditions. Evidence suggests that OL-lineage cells actually modulate immune functions. Indeed, OL-lineage cells appear to play both "victim" and "agent" in the CNS which raises a number of questions. Here, we summarize immunologic changes in OL-lineage cells and their effects, as well as consider OL-lineage cell changes which influence immune cells under pathological conditions. We also describe some of the underlying mechanisms of these changes and their effects. Finally, we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.


  • △These authors contributed equally to this work.
  • loading
  • [1]
    Peters A. A fourth type of neuroglial cell in the adult central nervous system[J]. J Neurocytol, 2004, 33(3): 345–357. doi: 10.1023/B:NEUR.0000044195.64009.27
    Butt AM, Kiff J, Hubbard P, et al. Synantocytes: new functions for novel NG2 expressing glia[J]. J Neurocytol, 2002, 31(6-7): 551–565. doi: 10.1023/a:1025751900356
    Huang W, Bhaduri A, Velmeshev D, et al. Origins and proliferative states of human oligodendrocyte precursor cells[J]. Cell, 2020, 182(3): 594–608.e11. doi: 10.1016/j.cell.2020.06.027
    Sim FJ, Lang JK, Waldau B, et al. Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation[J]. Ann Neurol, 2006, 59(5): 763–779. doi: 10.1002/ana.20812
    Wilson HC, Scolding NJ, Raine CS. Co-expression of PDGF α receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions[J]. J Neuroimmunol, 2006, 176(1-2): 162–173. doi: 10.1016/j.jneuroim.2006.04.014
    Marques S, Zeisel A, Codeluppi S, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system[J]. Science, 2016, 352(6291): 1326–1329. doi: 10.1126/science.aaf6463
    Scolding NJ, Rayner PJ, Compston DAS. Identification of A2B5-positive putative oligodendrocyte progenitor cells and A2B5-positive astrocytes in adult human white matter[J]. Neuroscience, 1999, 89(1): 1–4. doi: 10.1016/S0306-4522(98)00548-X
    Fratangeli A, Parmigiani E, Fumagalli M, et al. The regulated expression, intracellular trafficking, and membrane recycling of the P2Y-like receptor GPR17 in Oli-neu oligodendroglial cells[J]. J Biol Chem, 2013, 288(7): 5241–5256. doi: 10.1074/jbc.M112.404996
    Basu R, Das Sarma J. Connexin 43/47 channels are important for astrocyte/oligodendrocyte cross-talk in myelination and demyelination[J]. J Biosci, 2018, 43(5): 1055–1068. doi: 10.1007/s12038-018-9811-0
    Xiao L, Ohayon D, McKenzie IA, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning[J]. Nat Neurosci, 2016, 19(9): 1210–1217. doi: 10.1038/nn.4351
    Fard MK, van der Meer F, Sánchez P, et al. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions[J]. Sci Transl Med, 2017, 9(419): eaam7816. doi: 10.1126/scitranslmed.aam7816
    Radtke C, Sasaki M, Lankford KL, et al. CNPase expression in olfactory ensheathing cells[J]. J Biomed Biotechnol, 2011, 2011: 608496. doi: 10.1155/2011/608496
    Behrangi N, Lorenz P, Kipp M. Oligodendrocyte lineage marker expression in eGFP-GFAP transgenic mice[J]. J Mol Neurosci, 2021, 71(11): 2237–2248. doi: 10.1007/s12031-020-01771-w
    Dyer CA, Kendler A, Jean-Guillaume D, et al. GFAP-positive and myelin marker-positive glia in normal and pathologic environments[J]. J Neurosci Res, 2000, 60(3): 412–426. doi: 10.1002/(SICI)1097-4547(20000501)60:3<412::AID-JNR16>3.0.CO;2-E
    Takai Y, Misu T, Kaneko K, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study[J]. Brain, 2020, 143(5): 1431–1446. doi: 10.1093/brain/awaa102
    Breitschopf H, Suchanek G, Gould RM, et al. In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain[J]. Acta Neuropathol, 1992, 84(6): 581–587. doi: 10.1007/BF00227734
    Chen Y, Aulia S, Tang BL. Myelin-associated glycoprotein-mediated signaling in central nervous system pathophysiology[J]. Mol Neurobiol, 2006, 34(2): 81–91. doi: 10.1385/MN:34:2:81
    Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration[J]. Nature, 2012, 487(7408): 443–448. doi: 10.1038/nature11314
    Schirmer L, Möbius W, Zhao C, et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity[J]. Elife, 2018, 7: e36428. doi: 10.7554/eLife.36428
    Dulamea AO. Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis[J]. Adv Exp Med Biol, 2017, 958: 91–127. doi: 10.1007/978-3-319-47861-6_7
    Duncan GJ, Manesh SB, Hilton BJ, et al. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury[J]. Glia, 2020, 68(2): 227–245. doi: 10.1002/glia.23706
    Niu J, Tsai HH, Hoi KK, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation[J]. Nat Neurosci, 2019, 22(5): 709–718. doi: 10.1038/s41593-019-0369-4
    Nishiyama A, Komitova M, Suzuki R, et al. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity[J]. Nat Rev Neurosci, 2009, 10(1): 9–22. doi: 10.1038/nrn2495
    Glezer I, Lapointe A, Rivest S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries[J]. FASEB J, 2006, 20(6): 750–752. doi: 10.1096/fj.05-5234fje
    Falcão AM, van Bruggen D, Marques S, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis[J]. Nat Med, 2018, 24(12): 1837–1844. doi: 10.1038/s41591-018-0236-y
    Baxi EG, DeBruin J, Tosi DM, et al. Transfer of myelin-reactive Th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice[J]. J Neurosci, 2015, 35(22): 8626–8639. doi: 10.1523/JNEUROSCI.3817-14.2015
    Chang A, Nishiyama A, Peterson J, et al. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions[J]. J Neurosci, 2000, 20(17): 6404–6412. doi: 10.1523/JNEUROSCI.20-17-06404.2000
    Maheshwari A, Janssens K, Bogie J, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination[J]. Mediators Inflamm, 2013, 2013: 685317. doi: 10.1155/2013/685317
    Rodgers JM, Robinson AP, Rosler ES, et al. IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells[J]. Glia, 2015, 63(5): 768–779. doi: 10.1002/glia.22783
    Choi EH, Xu Y, Medynets M, et al. Activated T cells induce proliferation of oligodendrocyte progenitor cells via release of vascular endothelial cell growth factor-A[J]. Glia, 2018, 66(11): 2503–2513. doi: 10.1002/glia.23501
    Moore CS, Cui Q, Warsi NM, et al. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation[J]. J Immunol, 2015, 194(2): 761–772. doi: 10.4049/jimmunol.1401156
    Healy LM, Perron G, Won SY, et al. Differential transcriptional response profiles in human myeloid cell populations[J]. Clin Immunol, 2018, 189: 63–74. doi: 10.1016/j.clim.2016.04.006
    Kirby L, Jin J, Cardona JG, et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination[J]. Nat Commun, 2019, 10(1): 3887. doi: 10.1038/s41467-019-11638-3
    Lisak RP, Benjamins JA, Nedelkoska L, et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro[J]. J Neuroimmunol, 2012, 246(1-2): 85–95. doi: 10.1016/j.jneuroim.2012.02.015
    Tirotta E, Ransohoff RM, Lane TE. CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis[J]. Glia, 2011, 59(10): 1518–1528. doi: 10.1002/glia.21195
    Piatek P, Namiecinska M, Domowicz M, et al. Multiple sclerosis CD49d+CD154+ As myelin-specific lymphocytes induced during remyelination[J]. Cells, 2020, 9(1): 15. doi: 10.3390/cells9010015
    Piatek P, Namiecinska M, Domowicz M, et al. MS CD49d+CD154+ lymphocytes reprogram oligodendrocytes into immune reactive cells affecting CNS regeneration[J]. Cells, 2019, 8(12): 1508. doi: 10.3390/cells8121508
    Melero-Jerez C, Fernández-Gómez B, Lebrón-Galán R, et al. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation[J]. Glia, 2021, 69(4): 905–924. doi: 10.1002/glia.23936
    Rone MB, Cui Q, Fang J, et al. Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival[J]. J Neurosci, 2016, 36(17): 4698–4707. doi: 10.1523/JNEUROSCI.4077-15.2016
    Tsiperson V, Huang Y, Bagayogo I, et al. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination[J]. ASN Neuro, 2015, 7(1): 1759091414566878. doi: 10.1177/1759091414566878
    Moyon S, Dubessy AL, Aigrot MS, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration[J]. J Neurosci, 2015, 35(1): 4–20. doi: 10.1523/JNEUROSCI.0849-14.2015
    El-Behi M, Ciric B, Dai H, et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF[J]. Nat Immunol, 2011, 12(6): 568–575. doi: 10.1038/ni.2031
    Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1): 157–167. doi: 10.1136/gutjnl-2015-310514
    Sierra-Filardi E, Nieto C, Domínguez-Soto Á, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile[J]. J Immunol, 2014, 192(8): 3858–3867. doi: 10.4049/jimmunol.1302821
    Wang S, Chen L. Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses[J]. Microbes Infect, 2004, 6(8): 759–766. doi: 10.1016/j.micinf.2004.03.007
    Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nat Rev Immunol, 2014, 14(9): 585–600. doi: 10.1038/nri3707
    Cannella B, Raine CS. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation[J]. Ann Neurol, 2004, 55(1): 46–57. doi: 10.1002/ana.10764
    Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response[J]. J Histochem Cytochem, 2007, 55(5): 443–452. doi: 10.1369/jhc.6A7101.2006
    Balabanov R, Strand K, Goswami R, et al. Interferon-γ-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis[J]. J Neurosci, 2007, 27(8): 2013–2024. doi: 10.1523/JNEUROSCI.4689-06.2007
    Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases[J]. Autoimmun Rev, 2009, 8(5): 379–383. doi: 10.1016/j.autrev.2008.12.002
    Maurer M, von Stebut E. Macrophage inflammatory protein-1[J]. Int J Biochem Cell Biol, 2004, 36(10): 1882–1886. doi: 10.1016/j.biocel.2003.10.019
    Marques RE, Guabiraba R, Russo RC, et al. Targeting CCL5 in inflammation[J]. Expert Opin Ther Targets, 2013, 17(12): 1439–1460. doi: 10.1517/14728222.2013.837886
    Bergsteindottir K, Brennan A, Jessen KR, et al. In the presence of dexamethasone, gamma interferon induces rat oligodendrocytes to express major histocompatibility complex class Ⅱ molecules[J]. Proc Natl Acad Sci U S A, 1992, 89(19): 9054–9058. doi: 10.1073/pnas.89.19.9054
    Williams A, Piaton G, Aigrot MS, et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?[J]. Brain, 2007, 130(Pt 10): 2554–2565. doi: 10.1093/brain/awm202
    Majed HH, Chandran S, Niclou SP, et al. A novel role for Sema3A in neuroprotection from injury mediated by activated microglia[J]. J Neurosci, 2006, 26(6): 1730–1738. doi: 10.1523/JNEUROSCI.0702-05.2006
    Peferoen L, Kipp M, van der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system[J]. Immunology, 2014, 141(3): 302–313. doi: 10.1111/imm.12163
    Harrington EP, Bergles DE, Calabresi PA. Immune cell modulation of oligodendrocyte lineage cells[J]. Neurosci Lett, 2020, 715: 134601. doi: 10.1016/j.neulet.2019.134601
    Fitzner D, Schnaars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis[J]. J Cell Sci, 2011, 124(Pt 3): 447–458. doi: 10.1242/jcs.074088
    Frühbeis C, Fröhlich D, Kuo W, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication[J]. PLoS Biol, 2013, 11(7): e1001604. doi: 10.1371/journal.pbio.1001604
    Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, et al. Interleukin 18 (IL-18) as a target for immune intervention[J]. Acta Biochim Pol, 2016, 63(1): 59–63. doi: 10.18388/abp.2015_1153
    Kawanokuchi J, Mizuno T, Takeuchi H, et al. Production of interferon-γ by microglia[J]. Mult Scler, 2006, 12(5): 558–564. doi: 10.1177/1352458506070763
    Koning N, Swaab DF, Hoek RM, et al. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions[J]. J Neuropathol Exp Neurol, 2009, 68(2): 159–167. doi: 10.1097/NEN.0b013e3181964113
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annu Rev Immunol, 2005, 23: 515–548. doi: 10.1146/annurev.immunol.23.021704.115611
    Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu[J]. Cytokine Growth Factor Rev, 2001, 12(1): 53–72. doi: 10.1016/S1359-6101(00)00015-0
    Stober D, Schirmbeck R, Reimann J. IL-12/IL-18-dependent IFN-γ release by murine dendritic cells[J]. J Immunol, 2001, 167(2): 957–965. doi: 10.4049/jimmunol.167.2.957
    Rodriguez-Galán MC, Bream JH, Farr A, et al. Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression[J]. J Immunol, 2005, 174(5): 2796–2804. doi: 10.4049/jimmunol.174.5.2796
    Goncalves MB, Wu Y, Clarke E, et al. Regulation of myelination by exosome associated retinoic acid release from NG2-positive cells[J]. J Neurosci, 2019, 39(16): 3013–3027. doi: 10.1523/JNEUROSCI.2922-18.2019
    Chauhan P, Sheng WS, Hu S, et al. Differential cytokine-induced responses of polarized microglia[J]. Brain Sci, 2021, 11(11): 1482. doi: 10.3390/brainsci11111482
    Janowski AM, Colegio OR, Hornick EE, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation[J]. J Clin Invest, 2016, 126(10): 3917–3928. doi: 10.1172/JCI86953
    Sullivan CD, Geisert EE Jr. Expression of rat target of the antiproliferative antibody (TAPA) in the developing brain[J]. J Comp Neurol, 1998, 396(3): 366–380. doi: 10.1002/(SICI)1096-9861(19980706)396:3<366::AID-CNE7>3.0.CO;2-0
    Mela A, Goldman JE. The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination[J]. J Neurosci, 2009, 29(36): 11172–11181. doi: 10.1523/JNEUROSCI.3075-09.2009
    Szöllósi J, Horejsí V, Bene L, et al. Supramolecular complexes of MHC class Ⅰ, MHC class Ⅱ, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY[J]. J Immunol, 1996, 157(7): 2939–2946. https://pubmed.ncbi.nlm.nih.gov/8816400/
    Engering A, Pieters J. Association of distinct tetraspanins with MHC class Ⅱ molecules at different subcellular locations in human immature dendritic cells[J]. Int Immunol, 2001, 13(2): 127–134. doi: 10.1093/intimm/13.2.127
    Gitik M, Liraz-Zaltsman S, Oldenborg PA, et al. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes[J]. J Neuroinflammation, 2011, 8: 24. doi: 10.1186/1742-2094-8-24
    Dowling P, Shang G, Raval S, et al. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain[J]. J Exp Med, 1996, 184(4): 1513–1518. doi: 10.1084/jem.184.4.1513
    Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses[J]. Brain Res Rev, 2004, 44(1): 65–81. doi: 10.1016/j.brainresrev.2003.08.007
    Srivastava T, Diba P, Dean JM, et al. A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors[J]. J Clin Invest, 2018, 128(5): 2025–2041. doi: 10.1172/JCI94158
    Boccazzi M, Van Steenwinckel J, Schang AL, et al. The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation[J]. Cell Death Dis, 2021, 12(2): 166. doi: 10.1038/s41419-021-03446-9
    Fernández-Castañeda A, Chappell MS, Rosen DA, et al. The active contribution of OPCs to neuroinflammation is mediated by LRP1[J]. Acta Neuropathol, 2020, 139(2): 365–382. doi: 10.1007/s00401-019-02073-1
    Kang Z, Wang C, Zepp J, et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells[J]. Nat Neurosci, 2013, 16(10): 1401–1408. doi: 10.1038/nn.3505
    Zhang B, Liu C, Qian W, et al. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling[J]. Acta Crystallogr D Biol Crystallogr, 2014, 70(Pt 5): 1476–1483. doi: 10.1107/S1399004714005227
    Lindstrom SI, Sigurdardottir S, Zapadka TE, et al. Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration[J]. J Diabetes Complications, 2019, 33(9): 668–674. doi: 10.1016/j.jdiacomp.2019.05.016
    Mullershausen F, Craveiro LM, Shin Y, et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors[J]. J Neurochem, 2007, 102(4): 1151–1161. doi: 10.1111/j.1471-4159.2007.04629.x
    Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation[J]. Proc Natl Acad Sci U S A, 2011, 108(2): 751–756. doi: 10.1073/pnas.1014154108
    Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival[J]. Ann Neurol, 2008, 63(1): 61–71. doi: 10.1002/ana.21227
    Zhang J, Zhang ZG, Li Y, et al. Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis[J]. Neurobiol Dis, 2015, 76: 57–66. doi: 10.1016/j.nbd.2015.01.006
    Lee DH, Linker RA. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy?[J]. Expert Opin Ther Targets, 2012, 16(5): 451–462. doi: 10.1517/14728222.2012.677438
    Androutsou ME, Nteli A, Gkika A, et al. Characterization of asparagine deamidation in immunodominant myelin oligodendrocyte glycoprotein peptide potential immunotherapy for the treatment of multiple sclerosis[J]. Int J Mol Sci, 2020, 21(20): 7566. doi: 10.3390/ijms21207566
    Peng Y, Zhu F, Chen Z, et al. Characterization of myelin oligodendrocyte glycoprotein (MOG)35–55-specific CD8+ T cells in experimental autoimmune encephalomyelitis[J]. Chin Med J (Engl), 2019, 132(24): 2934–2940. doi: 10.1097/CM9.0000000000000551
    Kammona O, Kiparissides C. Recent advances in antigen-specific immunotherapies for the treatment of multiple sclerosis[J]. Brain Sci, 2020, 10(6): 333. doi: 10.3390/brainsci10060333
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (238) PDF downloads(40) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint