Citation: | Hui Li, Yang Chen, Jianqin Niu, Chenju Yi. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases[J]. The Journal of Biomedical Research, 2022, 36(5): 343-352. doi: 10.7555/JBR.36.20220016 |
[1] |
Peters A. A fourth type of neuroglial cell in the adult central nervous system[J]. J Neurocytol, 2004, 33(3): 345–357. doi: 10.1023/B:NEUR.0000044195.64009.27
|
[2] |
Butt AM, Kiff J, Hubbard P, et al. Synantocytes: new functions for novel NG2 expressing glia[J]. J Neurocytol, 2002, 31(6-7): 551–565. doi: 10.1023/a:1025751900356
|
[3] |
Huang W, Bhaduri A, Velmeshev D, et al. Origins and proliferative states of human oligodendrocyte precursor cells[J]. Cell, 2020, 182(3): 594–608.e11. doi: 10.1016/j.cell.2020.06.027
|
[4] |
Sim FJ, Lang JK, Waldau B, et al. Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation[J]. Ann Neurol, 2006, 59(5): 763–779. doi: 10.1002/ana.20812
|
[5] |
Wilson HC, Scolding NJ, Raine CS. Co-expression of PDGF α receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions[J]. J Neuroimmunol, 2006, 176(1-2): 162–173. doi: 10.1016/j.jneuroim.2006.04.014
|
[6] |
Marques S, Zeisel A, Codeluppi S, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system[J]. Science, 2016, 352(6291): 1326–1329. doi: 10.1126/science.aaf6463
|
[7] |
Scolding NJ, Rayner PJ, Compston DAS. Identification of A2B5-positive putative oligodendrocyte progenitor cells and A2B5-positive astrocytes in adult human white matter[J]. Neuroscience, 1999, 89(1): 1–4. doi: 10.1016/S0306-4522(98)00548-X
|
[8] |
Fratangeli A, Parmigiani E, Fumagalli M, et al. The regulated expression, intracellular trafficking, and membrane recycling of the P2Y-like receptor GPR17 in Oli-neu oligodendroglial cells[J]. J Biol Chem, 2013, 288(7): 5241–5256. doi: 10.1074/jbc.M112.404996
|
[9] |
Basu R, Das Sarma J. Connexin 43/47 channels are important for astrocyte/oligodendrocyte cross-talk in myelination and demyelination[J]. J Biosci, 2018, 43(5): 1055–1068. doi: 10.1007/s12038-018-9811-0
|
[10] |
Xiao L, Ohayon D, McKenzie IA, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning[J]. Nat Neurosci, 2016, 19(9): 1210–1217. doi: 10.1038/nn.4351
|
[11] |
Fard MK, van der Meer F, Sánchez P, et al. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions[J]. Sci Transl Med, 2017, 9(419): eaam7816. doi: 10.1126/scitranslmed.aam7816
|
[12] |
Radtke C, Sasaki M, Lankford KL, et al. CNPase expression in olfactory ensheathing cells[J]. J Biomed Biotechnol, 2011, 2011: 608496. doi: 10.1155/2011/608496
|
[13] |
Behrangi N, Lorenz P, Kipp M. Oligodendrocyte lineage marker expression in eGFP-GFAP transgenic mice[J]. J Mol Neurosci, 2021, 71(11): 2237–2248. doi: 10.1007/s12031-020-01771-w
|
[14] |
Dyer CA, Kendler A, Jean-Guillaume D, et al. GFAP-positive and myelin marker-positive glia in normal and pathologic environments[J]. J Neurosci Res, 2000, 60(3): 412–426. doi: 10.1002/(SICI)1097-4547(20000501)60:3<412::AID-JNR16>3.0.CO;2-E
|
[15] |
Takai Y, Misu T, Kaneko K, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study[J]. Brain, 2020, 143(5): 1431–1446. doi: 10.1093/brain/awaa102
|
[16] |
Breitschopf H, Suchanek G, Gould RM, et al. In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain[J]. Acta Neuropathol, 1992, 84(6): 581–587. doi: 10.1007/BF00227734
|
[17] |
Chen Y, Aulia S, Tang BL. Myelin-associated glycoprotein-mediated signaling in central nervous system pathophysiology[J]. Mol Neurobiol, 2006, 34(2): 81–91. doi: 10.1385/MN:34:2:81
|
[18] |
Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration[J]. Nature, 2012, 487(7408): 443–448. doi: 10.1038/nature11314
|
[19] |
Schirmer L, Möbius W, Zhao C, et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity[J]. Elife, 2018, 7: e36428. doi: 10.7554/eLife.36428
|
[20] |
Dulamea AO. Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis[J]. Adv Exp Med Biol, 2017, 958: 91–127. doi: 10.1007/978-3-319-47861-6_7
|
[21] |
Duncan GJ, Manesh SB, Hilton BJ, et al. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury[J]. Glia, 2020, 68(2): 227–245. doi: 10.1002/glia.23706
|
[22] |
Niu J, Tsai HH, Hoi KK, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation[J]. Nat Neurosci, 2019, 22(5): 709–718. doi: 10.1038/s41593-019-0369-4
|
[23] |
Nishiyama A, Komitova M, Suzuki R, et al. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity[J]. Nat Rev Neurosci, 2009, 10(1): 9–22. doi: 10.1038/nrn2495
|
[24] |
Glezer I, Lapointe A, Rivest S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries[J]. FASEB J, 2006, 20(6): 750–752. doi: 10.1096/fj.05-5234fje
|
[25] |
Falcão AM, van Bruggen D, Marques S, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis[J]. Nat Med, 2018, 24(12): 1837–1844. doi: 10.1038/s41591-018-0236-y
|
[26] |
Baxi EG, DeBruin J, Tosi DM, et al. Transfer of myelin-reactive Th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice[J]. J Neurosci, 2015, 35(22): 8626–8639. doi: 10.1523/JNEUROSCI.3817-14.2015
|
[27] |
Chang A, Nishiyama A, Peterson J, et al. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions[J]. J Neurosci, 2000, 20(17): 6404–6412. doi: 10.1523/JNEUROSCI.20-17-06404.2000
|
[28] |
Maheshwari A, Janssens K, Bogie J, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination[J]. Mediators Inflamm, 2013, 2013: 685317. doi: 10.1155/2013/685317
|
[29] |
Rodgers JM, Robinson AP, Rosler ES, et al. IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells[J]. Glia, 2015, 63(5): 768–779. doi: 10.1002/glia.22783
|
[30] |
Choi EH, Xu Y, Medynets M, et al. Activated T cells induce proliferation of oligodendrocyte progenitor cells via release of vascular endothelial cell growth factor-A[J]. Glia, 2018, 66(11): 2503–2513. doi: 10.1002/glia.23501
|
[31] |
Moore CS, Cui Q, Warsi NM, et al. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation[J]. J Immunol, 2015, 194(2): 761–772. doi: 10.4049/jimmunol.1401156
|
[32] |
Healy LM, Perron G, Won SY, et al. Differential transcriptional response profiles in human myeloid cell populations[J]. Clin Immunol, 2018, 189: 63–74. doi: 10.1016/j.clim.2016.04.006
|
[33] |
Kirby L, Jin J, Cardona JG, et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination[J]. Nat Commun, 2019, 10(1): 3887. doi: 10.1038/s41467-019-11638-3
|
[34] |
Lisak RP, Benjamins JA, Nedelkoska L, et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro[J]. J Neuroimmunol, 2012, 246(1-2): 85–95. doi: 10.1016/j.jneuroim.2012.02.015
|
[35] |
Tirotta E, Ransohoff RM, Lane TE. CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis[J]. Glia, 2011, 59(10): 1518–1528. doi: 10.1002/glia.21195
|
[36] |
Piatek P, Namiecinska M, Domowicz M, et al. Multiple sclerosis CD49d+CD154+ As myelin-specific lymphocytes induced during remyelination[J]. Cells, 2020, 9(1): 15. doi: 10.3390/cells9010015
|
[37] |
Piatek P, Namiecinska M, Domowicz M, et al. MS CD49d+CD154+ lymphocytes reprogram oligodendrocytes into immune reactive cells affecting CNS regeneration[J]. Cells, 2019, 8(12): 1508. doi: 10.3390/cells8121508
|
[38] |
Melero-Jerez C, Fernández-Gómez B, Lebrón-Galán R, et al. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation[J]. Glia, 2021, 69(4): 905–924. doi: 10.1002/glia.23936
|
[39] |
Rone MB, Cui Q, Fang J, et al. Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival[J]. J Neurosci, 2016, 36(17): 4698–4707. doi: 10.1523/JNEUROSCI.4077-15.2016
|
[40] |
Tsiperson V, Huang Y, Bagayogo I, et al. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination[J]. ASN Neuro, 2015, 7(1): 1759091414566878. doi: 10.1177/1759091414566878
|
[41] |
Moyon S, Dubessy AL, Aigrot MS, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration[J]. J Neurosci, 2015, 35(1): 4–20. doi: 10.1523/JNEUROSCI.0849-14.2015
|
[42] |
El-Behi M, Ciric B, Dai H, et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF[J]. Nat Immunol, 2011, 12(6): 568–575. doi: 10.1038/ni.2031
|
[43] |
Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1): 157–167. doi: 10.1136/gutjnl-2015-310514
|
[44] |
Sierra-Filardi E, Nieto C, Domínguez-Soto Á, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile[J]. J Immunol, 2014, 192(8): 3858–3867. doi: 10.4049/jimmunol.1302821
|
[45] |
Wang S, Chen L. Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses[J]. Microbes Infect, 2004, 6(8): 759–766. doi: 10.1016/j.micinf.2004.03.007
|
[46] |
Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nat Rev Immunol, 2014, 14(9): 585–600. doi: 10.1038/nri3707
|
[47] |
Cannella B, Raine CS. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation[J]. Ann Neurol, 2004, 55(1): 46–57. doi: 10.1002/ana.10764
|
[48] |
Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response[J]. J Histochem Cytochem, 2007, 55(5): 443–452. doi: 10.1369/jhc.6A7101.2006
|
[49] |
Balabanov R, Strand K, Goswami R, et al. Interferon-γ-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis[J]. J Neurosci, 2007, 27(8): 2013–2024. doi: 10.1523/JNEUROSCI.4689-06.2007
|
[50] |
Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases[J]. Autoimmun Rev, 2009, 8(5): 379–383. doi: 10.1016/j.autrev.2008.12.002
|
[51] |
Maurer M, von Stebut E. Macrophage inflammatory protein-1[J]. Int J Biochem Cell Biol, 2004, 36(10): 1882–1886. doi: 10.1016/j.biocel.2003.10.019
|
[52] |
Marques RE, Guabiraba R, Russo RC, et al. Targeting CCL5 in inflammation[J]. Expert Opin Ther Targets, 2013, 17(12): 1439–1460. doi: 10.1517/14728222.2013.837886
|
[53] |
Bergsteindottir K, Brennan A, Jessen KR, et al. In the presence of dexamethasone, gamma interferon induces rat oligodendrocytes to express major histocompatibility complex class Ⅱ molecules[J]. Proc Natl Acad Sci U S A, 1992, 89(19): 9054–9058. doi: 10.1073/pnas.89.19.9054
|
[54] |
Williams A, Piaton G, Aigrot MS, et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?[J]. Brain, 2007, 130(Pt 10): 2554–2565. doi: 10.1093/brain/awm202
|
[55] |
Majed HH, Chandran S, Niclou SP, et al. A novel role for Sema3A in neuroprotection from injury mediated by activated microglia[J]. J Neurosci, 2006, 26(6): 1730–1738. doi: 10.1523/JNEUROSCI.0702-05.2006
|
[56] |
Peferoen L, Kipp M, van der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system[J]. Immunology, 2014, 141(3): 302–313. doi: 10.1111/imm.12163
|
[57] |
Harrington EP, Bergles DE, Calabresi PA. Immune cell modulation of oligodendrocyte lineage cells[J]. Neurosci Lett, 2020, 715: 134601. doi: 10.1016/j.neulet.2019.134601
|
[58] |
Fitzner D, Schnaars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis[J]. J Cell Sci, 2011, 124(Pt 3): 447–458. doi: 10.1242/jcs.074088
|
[59] |
Frühbeis C, Fröhlich D, Kuo W, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication[J]. PLoS Biol, 2013, 11(7): e1001604. doi: 10.1371/journal.pbio.1001604
|
[60] |
Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, et al. Interleukin 18 (IL-18) as a target for immune intervention[J]. Acta Biochim Pol, 2016, 63(1): 59–63. doi: 10.18388/abp.2015_1153
|
[61] |
Kawanokuchi J, Mizuno T, Takeuchi H, et al. Production of interferon-γ by microglia[J]. Mult Scler, 2006, 12(5): 558–564. doi: 10.1177/1352458506070763
|
[62] |
Koning N, Swaab DF, Hoek RM, et al. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions[J]. J Neuropathol Exp Neurol, 2009, 68(2): 159–167. doi: 10.1097/NEN.0b013e3181964113
|
[63] |
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annu Rev Immunol, 2005, 23: 515–548. doi: 10.1146/annurev.immunol.23.021704.115611
|
[64] |
Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu[J]. Cytokine Growth Factor Rev, 2001, 12(1): 53–72. doi: 10.1016/S1359-6101(00)00015-0
|
[65] |
Stober D, Schirmbeck R, Reimann J. IL-12/IL-18-dependent IFN-γ release by murine dendritic cells[J]. J Immunol, 2001, 167(2): 957–965. doi: 10.4049/jimmunol.167.2.957
|
[66] |
Rodriguez-Galán MC, Bream JH, Farr A, et al. Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression[J]. J Immunol, 2005, 174(5): 2796–2804. doi: 10.4049/jimmunol.174.5.2796
|
[67] |
Goncalves MB, Wu Y, Clarke E, et al. Regulation of myelination by exosome associated retinoic acid release from NG2-positive cells[J]. J Neurosci, 2019, 39(16): 3013–3027. doi: 10.1523/JNEUROSCI.2922-18.2019
|
[68] |
Chauhan P, Sheng WS, Hu S, et al. Differential cytokine-induced responses of polarized microglia[J]. Brain Sci, 2021, 11(11): 1482. doi: 10.3390/brainsci11111482
|
[69] |
Janowski AM, Colegio OR, Hornick EE, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation[J]. J Clin Invest, 2016, 126(10): 3917–3928. doi: 10.1172/JCI86953
|
[70] |
Sullivan CD, Geisert EE Jr. Expression of rat target of the antiproliferative antibody (TAPA) in the developing brain[J]. J Comp Neurol, 1998, 396(3): 366–380. doi: 10.1002/(SICI)1096-9861(19980706)396:3<366::AID-CNE7>3.0.CO;2-0
|
[71] |
Mela A, Goldman JE. The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination[J]. J Neurosci, 2009, 29(36): 11172–11181. doi: 10.1523/JNEUROSCI.3075-09.2009
|
[72] |
Szöllósi J, Horejsí V, Bene L, et al. Supramolecular complexes of MHC class Ⅰ, MHC class Ⅱ, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY[J]. J Immunol, 1996, 157(7): 2939–2946. https://pubmed.ncbi.nlm.nih.gov/8816400/
|
[73] |
Engering A, Pieters J. Association of distinct tetraspanins with MHC class Ⅱ molecules at different subcellular locations in human immature dendritic cells[J]. Int Immunol, 2001, 13(2): 127–134. doi: 10.1093/intimm/13.2.127
|
[74] |
Gitik M, Liraz-Zaltsman S, Oldenborg PA, et al. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes[J]. J Neuroinflammation, 2011, 8: 24. doi: 10.1186/1742-2094-8-24
|
[75] |
Dowling P, Shang G, Raval S, et al. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain[J]. J Exp Med, 1996, 184(4): 1513–1518. doi: 10.1084/jem.184.4.1513
|
[76] |
Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses[J]. Brain Res Rev, 2004, 44(1): 65–81. doi: 10.1016/j.brainresrev.2003.08.007
|
[77] |
Srivastava T, Diba P, Dean JM, et al. A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors[J]. J Clin Invest, 2018, 128(5): 2025–2041. doi: 10.1172/JCI94158
|
[78] |
Boccazzi M, Van Steenwinckel J, Schang AL, et al. The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation[J]. Cell Death Dis, 2021, 12(2): 166. doi: 10.1038/s41419-021-03446-9
|
[79] |
Fernández-Castañeda A, Chappell MS, Rosen DA, et al. The active contribution of OPCs to neuroinflammation is mediated by LRP1[J]. Acta Neuropathol, 2020, 139(2): 365–382. doi: 10.1007/s00401-019-02073-1
|
[80] |
Kang Z, Wang C, Zepp J, et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells[J]. Nat Neurosci, 2013, 16(10): 1401–1408. doi: 10.1038/nn.3505
|
[81] |
Zhang B, Liu C, Qian W, et al. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling[J]. Acta Crystallogr D Biol Crystallogr, 2014, 70(Pt 5): 1476–1483. doi: 10.1107/S1399004714005227
|
[82] |
Lindstrom SI, Sigurdardottir S, Zapadka TE, et al. Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration[J]. J Diabetes Complications, 2019, 33(9): 668–674. doi: 10.1016/j.jdiacomp.2019.05.016
|
[83] |
Mullershausen F, Craveiro LM, Shin Y, et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors[J]. J Neurochem, 2007, 102(4): 1151–1161. doi: 10.1111/j.1471-4159.2007.04629.x
|
[84] |
Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation[J]. Proc Natl Acad Sci U S A, 2011, 108(2): 751–756. doi: 10.1073/pnas.1014154108
|
[85] |
Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival[J]. Ann Neurol, 2008, 63(1): 61–71. doi: 10.1002/ana.21227
|
[86] |
Zhang J, Zhang ZG, Li Y, et al. Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis[J]. Neurobiol Dis, 2015, 76: 57–66. doi: 10.1016/j.nbd.2015.01.006
|
[87] |
Lee DH, Linker RA. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy?[J]. Expert Opin Ther Targets, 2012, 16(5): 451–462. doi: 10.1517/14728222.2012.677438
|
[88] |
Androutsou ME, Nteli A, Gkika A, et al. Characterization of asparagine deamidation in immunodominant myelin oligodendrocyte glycoprotein peptide potential immunotherapy for the treatment of multiple sclerosis[J]. Int J Mol Sci, 2020, 21(20): 7566. doi: 10.3390/ijms21207566
|
[89] |
Peng Y, Zhu F, Chen Z, et al. Characterization of myelin oligodendrocyte glycoprotein (MOG)35–55-specific CD8+ T cells in experimental autoimmune encephalomyelitis[J]. Chin Med J (Engl), 2019, 132(24): 2934–2940. doi: 10.1097/CM9.0000000000000551
|
[90] |
Kammona O, Kiparissides C. Recent advances in antigen-specific immunotherapies for the treatment of multiple sclerosis[J]. Brain Sci, 2020, 10(6): 333. doi: 10.3390/brainsci10060333
|