• ISSN 1674-8301
  • CN 32-1810/R
Volume 36 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Zhenxiang Gong, Li Ba, Min Zhang. Dysfunction of the oligodendrocytes in amyotrophic lateral sclerosis[J]. The Journal of Biomedical Research, 2022, 36(5): 336-342. doi: 10.7555/JBR.36.20220009
Citation: Zhenxiang Gong, Li Ba, Min Zhang. Dysfunction of the oligodendrocytes in amyotrophic lateral sclerosis[J]. The Journal of Biomedical Research, 2022, 36(5): 336-342. doi: 10.7555/JBR.36.20220009

Dysfunction of the oligodendrocytes in amyotrophic lateral sclerosis

doi: 10.7555/JBR.36.20220009
Funds:  The current study was supported by the innovative population project of Hubei Province (Grant No. 2019CFA030) and the clinical research project of Bethune Charitable Foundation, China.
More Information
  • Corresponding author: Min Zhang, Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Qiaokou District, Wuhan, Hubei 430030, China. Tel: +86-27-83663895, E-mail: zhang_min_3464@126.com
  • Received: 2022-01-10
  • Revised: 2022-06-13
  • Accepted: 2022-07-04
  • Published: 2022-08-28
  • Issue Date: 2022-09-28
  • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by irreversible deterioration of upper and lower motor neurons (MNs). Previously, studies on the involvement of glial cells in the pathogenic process of ALS have mainly revolved around astrocytes and microglia. And oligodendrocytes (OLs) have only recently been highlighted. Grey matter demyelination within the motor cortex and proliferation of the oligodendrocyte precursor cells (OPCs) was observed in ALS patients. The selective ablation of mutant SOD1 (the dysfunctional superoxide dismutase) from the oligodendrocyte progenitors after birth significantly delayed disease onset and prolonged the overall survival in ALS mice model (SOD1G37R). In this study, we review the several mechanisms of oligodendrocyte dysfunction involved in the pathological process of myelin damage and MNs death during ALS. Particularly, we examined the insufficient local energy supply from OLs to axons, impaired differentiation from OPCs into OLs mediated by oxidative stress damage, and inflammatory injury to the OLs. Since increasing evidence depicted that ALS is not a disease limited to MNs damage, exploring the mechanisms by which oligodendrocyte dysfunction is involved in MNs death would contribute to a more comprehensive understanding of ALS and identifying potential drug targets.


  • CLC number: R744.8, Document code: A
    The authors reported no conflict of interests.
    These authors contributed to this work equally.
  • loading
  • [1]
    Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis[J]. Nat Rev Dis Primers, 2017, 3: 17071. doi: 10.1038/nrdp.2017.71
    Hardiman O, Van Den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2011, 7(11): 639–649. doi: 10.1038/nrneurol.2011.153
    Rothstein JD. Edaravone: A new drug approved for ALS[J]. Cell, 2017, 171(4): 725. doi: 10.1016/j.cell.2017.10.011
    Cerveró A, Casado A, Riancho J. Retinal changes in amyotrophic lateral sclerosis: looking at the disease through a new window[J]. J Neurol, 2021, 268(6): 2083–2089.
    Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis[J]. Nat Rev Neurosci, 2013, 14(4): 248–264.
    Boillée S, Yamanaka K, Lobsiger CS, et al. Onset and progression in inherited ALS determined by motor neurons and microglia[J]. Science, 2006, 312(5778): 1389–1392. doi: 10.1126/science.1123511
    Yamanaka K, Chun SJ, Boillee S, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis[J]. Nat Neurosci, 2008, 11(3): 251–253. doi: 10.1038/nn2047
    Fünfschilling U, Supplie LM, Mahad D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J]. Nature, 2012, 485(7399): 517–521. doi: 10.1038/nature11007
    Puentes F, Malaspina A, Van Noort JM, et al. Non-neuronal cells in ALS: Role of glial, immune cells and blood-CNS barriers[J]. Brain Pathol, 2016, 26(2): 248–257. doi: 10.1111/bpa.12352
    Boillée S, Velde C V, Cleveland D W. ALS: a disease of motor neurons and their nonneuronal neighbors[J]. Neuron, 2006, 52(1): 39–59. doi: 10.1016/j.neuron.2006.09.018
    Lino MM, Schneider C, Caroni P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease[J]. J Neurosci, 2002, 22(12): 4825–4832. doi: 10.1523/JNEUROSCI.22-12-04825.2002
    Pramatarova A, Laganière J, Roussel J, et al. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment[J]. J Neurosci, 2001, 21(10): 3369–3374. doi: 10.1523/JNEUROSCI.21-10-03369.2001
    Clement AM, Nguyen MD, Roberts EA, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice[J]. Science, 2003, 302(5642): 113–117. doi: 10.1126/science.1086071
    Beers DR, Henkel JS, Xiao Q, et al. Wild-type microglia extend survival in PU. 1 knockout mice with familial amyotrophic lateral sclerosis[J]. Proc Natl Acad Sci U S A, 2006, 103(43): 16021–16026. doi: 10.1073/pnas.0607423103
    Stadelmann C, Timmler S, Barrantes-Freer A, et al. Myelin in the central nervous system: structure, function, and pathology[J]. Physiol Rev, 2019, 99(3): 1381–1431. doi: 10.1152/physrev.00031.2018
    Uyeda A, Muramatsu R. molecular mechanisms of central nervous system axonal regeneration and remyelination: a review[J]. Int J Mol Sci, 2020, 21(21): 8116. doi: 10.3390/ijms21218116
    Saab AS, Nave KA. Myelin dynamics: protecting and shaping neuronal functions[J]. Curr Opin Neurobiol, 2017, 47: 104–112. doi: 10.1016/j.conb.2017.09.013
    Saez I, Duran J, Sinadinos C, et al. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia[J]. J Cereb Blood Flow Metab, 2014, 34(6): 945–955. doi: 10.1038/jcbfm.2014.33
    Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte[J]. Brain Res, 2016, 1641: 139–148. doi: 10.1016/j.brainres.2015.09.021
    Peferoen L, Kipp M, Van Der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system[J]. Immunology, 2014, 141(3): 302–313. doi: 10.1111/imm.12163
    Kang SH, Li Y, Fukaya M, et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis[J]. Nat Neurosci, 2013, 16(5): 571–579. doi: 10.1038/nn.3357
    Philips T, Bento-Abreu A, Nonneman A, et al. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis[J]. Brain, 2013, 136(Pt 2): 471–482. doi: 10.1093/brain/aws339
    Bonfanti E, Bonifacino T, Raffaele S, et al. Abnormal upregulation of GPR17 receptor contributes to oligodendrocyte dysfunction in SOD1 G93A mice[J]. Int J Mol Sci, 2020, 21(7): 2395. doi: 10.3390/ijms21072395
    Kim S, Chung AY, Na JE, et al. Myelin degeneration induced by mutant superoxide dismutase 1 accumulation promotes amyotrophic lateral sclerosis[J]. Glia, 2019, 67(10): 1910–1921. doi: 10.1002/glia.23669
    Dienel GA. Brain glucose metabolism: integration of energetics with function[J]. Physiol Rev, 2019, 99(1): 949–1045. doi: 10.1152/physrev.00062.2017
    Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6): 724–738. doi: 10.1016/j.cmet.2011.08.016
    Allaman I, Bélanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and for worse[J]. Trends Neurosci, 2011, 34(2): 76–87. doi: 10.1016/j.tins.2010.12.001
    Meyer N, Richter N, Fan Z, et al. Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose[J]. Cell Rep, 2018, 22(9): 2383–2394. doi: 10.1016/j.celrep.2018.02.022
    Maglione M, Tress O, Haas B, et al. Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32[J]. Glia, 2010, 58(9): 1104–1117. doi: 10.1002/glia.20991
    Cui Y, Masaki K, Yamasaki R, et al. Extensive dysregulations of oligodendrocytic and astrocytic connexins are associated with disease progression in an amyotrophic lateral sclerosis mouse model[J]. J Neuroinflammation, 2014, 11: 42. doi: 10.1186/1742-2094-11-42
    Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update[J]. Glia, 2007, 55(12): 1251–1262. doi: 10.1002/glia.20528
    Bélanger M, Magistretti J. The role of astroglia in neuroprotection[J]. Dialogues Clin Neurosci, 2009, 11(3): 281–295. doi: 10.31887/DCNS.2009.11.3/mbelanger
    Saab AS, Tzvetavona I, Trevisiol A, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism[J]. Neuron, 2016, 91(1): 119–132. doi: 10.1016/j.neuron.2016.05.016
    Rinholm JE, Hamilton NB, Kessaris N, et al. Regulation of oligodendrocyte development and myelination by glucose and lactate[J]. J Neurosci, 2011, 31(2): 538–548. doi: 10.1523/JNEUROSCI.3516-10.2011
    Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration[J]. Nature, 2012, 487(7408): 443–448. doi: 10.1038/nature11314
    Roosterman D, Cottrell GS, Roosterman D, et al. Astrocytes and neurons communicate via a monocarboxylic acid shuttle[J]. AIMS Neurosci, 2020, 7(2): 94–106. doi: 10.3934/Neuroscience.2020007
    Zielke HR, Zielke CL, Baab PJ. Direct measurement of oxidative metabolism in the living brain by microdialysis: a review[J]. J Neurochem, 2009, 109(Suppl 1): 24–29.
    Morena J, Gupta A, Hoyle JC. Charcot-marie-tooth: from molecules to therapy[J]. Int J Mol Sci, 2019, 20(14): 3419. doi: 10.3390/ijms20143419
    Kim MS, Gloor GB, Bai DL. The distribution and functional properties of Pelizaeus-Merzbacher-like disease-linked Cx47 mutations on Cx47/Cx47 homotypic and Cx47/Cx43 heterotypic gap junctions[J]. Biochem J, 2013, 452(2): 249–258. doi: 10.1042/BJ20121821
    Gandhi GK, Cruz NF, Ball KK, et al. Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons[J]. J Neurochem, 2009, 111(2): 522–536. doi: 10.1111/j.1471-4159.2009.06333.x
    Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target[J]. Free Radic Biol Med, 2010, 48(5): 629–641. doi: 10.1016/j.freeradbiomed.2009.11.018
    Jaiswal MK. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs[J]. Med Res Rev, 2019, 39(2): 733–748. doi: 10.1002/med.21528
    Fernandez-Castaneda A, Gaultier A. Adult oligodendrocyte progenitor cells - Multifaceted regulators of the CNS in health and disease[J]. Brain Behav Immun, 2016, 57: 1–7. doi: 10.1016/j.bbi.2016.01.005
    Kuhn S, Gritti L, Crooks D, et al. Oligodendrocytes in development, myelin generation and beyond[J]. Cells, 2019, 8(11): 1424. doi: 10.3390/cells8111424
    Trist BG, Hilton JB, Hare DJ, et al. Superoxide dismutase 1 in health and disease: how a frontline antioxidant becomes neurotoxic[J]. Angew Chem Int Ed, 2021, 60(17): 9215–9246. doi: 10.1002/anie.202000451
    Veiga S, Ly J, Chan PH, et al. SOD1 overexpression improves features of the oligodendrocyte precursor response in vitro[J]. Neurosci Lett, 2011, 503(1): 10–14. doi: 10.1016/j.neulet.2011.07.053
    Baud O, Haynes RF, Wang H, et al. Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury[J]. Eur J Neurosci, 2004, 20(1): 29–40. doi: 10.1111/j.0953-816X.2004.03451.x
    Kansanen E, Kuosmanen SM, Leinonen H, et al. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer[J]. Redox Biol, 2013, 1(1): 45–49. doi: 10.1016/j.redox.2012.10.001
    Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N. Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein[J]. Biochemistry, 2005, 44(18): 6889–6899. doi: 10.1021/bi047434h
    Sarlette A, Krampfl K, Grothe C, et al. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis[J]. J Neuropathol Exp Neurol, 2008, 67(11): 1055–1062. doi: 10.1097/NEN.0b013e31818b4906
    Nellessen A, Nyamoya S, Zendedel A, et al. Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model[J]. Metab Brain Dis, 2020, 35(2): 353–362. doi: 10.1007/s11011-019-00488-z
    Minj E, Upadhayay S, Mehan S. Nrf2/HO-1 signaling activator acetyl-11-keto-beta Boswellic Acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS[J]. Neurochem Res, 2021, 46(11): 2867–2884. doi: 10.1007/s11064-021-03366-2
    Correale J, Gaitán MI, Ysrraelit MC, et al. Progressive multiple sclerosis: from pathogenic mechanisms to treatment[J]. Brain, 2017, 140(3): 527–546. doi: 10.1093/brain/aww258
    Reich DS, Lucchinetti CF, Calabresi A. Multiple sclerosis[J]. N Engl J Med, 2018, 378(2): 169–180. doi: 10.1056/NEJMra1401483
    Haider L, Fischer MT, Frischer JM, et al. Oxidative damage in multiple sclerosis lesions[J]. Brain, 2011, 134(Pt 7): 1914–1924. doi: 10.1093/brain/awr128
    Höftberger R, Fink S, Aboul-Enein F, et al. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis[J]. Glia, 2010, 58(15): 1847–1857. doi: 10.1002/glia.21054
    Hollensworth SB, Shen CC, Sim JE, et al. Glial cell type-specific responses to menadione-induced oxidative stress[J]. Free Radic Biol Med, 2000, 28(8): 1161–1174. doi: 10.1016/S0891-5849(00)00214-8
    Xu S, Lu J, Shao A, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294. doi: 10.3389/fimmu.2020.00294
    Lim JL, Van Der pol SMA, Baron W, et al. Protandim protects oligodendrocytes against an oxidative insult[J]. Antioxidants (Basel), 2016, 5(3): 30. doi: 10.3390/antiox5030030
    Jana M, Pahan K. Redox regulation of cytokine-mediated inhibition of myelin gene expression in human primary oligodendrocytes[J]. Free Radic Biol Med, 2005, 39(6): 823–831. doi: 10.1016/j.freeradbiomed.2005.05.014
    Deng Y, Xie D, Fang M, et al. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain[J]. PLoS One, 2014, 9(1): e87420. doi: 10.1371/journal.pone.0087420
    Kirby L, Jin J, Cardona JG, et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination[J]. Nat Commun, 2019, 10(1): 3887. doi: 10.1038/s41467-019-11638-3
    Liu YJ, Aguzzi A. NG2 glia are required for maintaining microglia homeostatic state[J]. Glia, 2020, 68(2): 345–355. doi: 10.1002/glia.23721
    Zhang SZ, Wang Q, Yang Q, et al. NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis[J]. BMC Med, 2019, 17(1): 204. doi: 10.1186/s12916-019-1439-x
    McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis[J]. Acta Neuropathol, 2019, 137(5): 715–730. doi: 10.1007/s00401-018-1933-9
    Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies[J]. Lancet Neurol, 2019, 18(2): 211–220. doi: 10.1016/S1474-4422(18)30394-6
    McCombe A, Lee JD, Woodruff TM, et al. The peripheral immune system and amyotrophic lateral sclerosis[J]. Front Neurol, 2020, 11: 279. doi: 10.3389/fneur.2020.00279
    Cunha MI, Su M, Cantuti-Castelvetri L, et al. Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis[J]. J Exp Med, 2020, 217(5): e20191390. doi: 10.1084/jem.20191390
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (200) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint