4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Qianqian Chen, Chunmei Hu, Wei Lu, Tianxing Hang, Yan Shao, Cheng Chen, Yanli Wang, Nan Li, Linling Jin, Wei Wu, Hong Wang, Xiaoning Zeng, Weiping Xie. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing[J]. The Journal of Biomedical Research, 2022, 36(3): 167-180. DOI: 10.7555/JBR.36.20220007
Citation: Qianqian Chen, Chunmei Hu, Wei Lu, Tianxing Hang, Yan Shao, Cheng Chen, Yanli Wang, Nan Li, Linling Jin, Wei Wu, Hong Wang, Xiaoning Zeng, Weiping Xie. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing[J]. The Journal of Biomedical Research, 2022, 36(3): 167-180. DOI: 10.7555/JBR.36.20220007

Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing

  • Tuberculosis (TB), is an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), and presents with high morbidity and mortality. Alveolar macrophages play an important role in TB pathogenesis although there is heterogeneity and functional plasticity. This study aimed to show the characteristics of alveolar macrophages from bronchioalveolar lavage fluid (BALF) in active TB patients. Single-cell RNA sequencing (scRNA-seq) was performed on BALF cells from three patients with active TB and additional scRNA-seq data from three healthy adults were established as controls. Transcriptional profiles were analyzed and compared by differential geneexpression and functional enrichment analysis. We applied pseudo-temporal trajectory analysis to investigate correlations and heterogeneity within alveolar macrophage subclusters. Alveolar macrophages from active TB patients at the single-cell resolution are described. We found that TB patients have higher cellular percentages in five macrophage subclusters. Alveolar macrophage subclusters with increased percentages were involved in inflammatory signaling pathways as well as the basic macrophage functions. The TB-increased alveolar macrophage subclusters might be derived from M1-like polarization state, before switching to an M2-like polarization state with the development of M. tuberculosis infection. Cell-cell communications of alveolar macrophages also increased and enhanced in active TB patients. Overall, our study demonstrated the characteristics of alveolar macrophages from BALF in active TB patients by using scRNA-seq.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return