• ISSN 1674-8301
  • CN 32-1810/R
Volume 36 Issue 3
May  2022
Turn off MathJax
Article Contents
Wei Ye, Xiaoyu Liu, Ruiting He, Liming Gou, Ming Lu, Gang Yang, Jiaqi Wen, Xufei Wang, Fang Liu, Sujuan Ma, Weifeng Qian, Shaochang Jia, Tong Ding, Luan Sun, Wei Gao. Improving antibody affinity through in vitro mutagenesis in complementarity determining regions[J]. The Journal of Biomedical Research, 2022, 36(3): 155-166. doi: 10.7555/JBR.36.20220003
Citation: Wei Ye, Xiaoyu Liu, Ruiting He, Liming Gou, Ming Lu, Gang Yang, Jiaqi Wen, Xufei Wang, Fang Liu, Sujuan Ma, Weifeng Qian, Shaochang Jia, Tong Ding, Luan Sun, Wei Gao. Improving antibody affinity through in vitro mutagenesis in complementarity determining regions[J]. The Journal of Biomedical Research, 2022, 36(3): 155-166. doi: 10.7555/JBR.36.20220003

Improving antibody affinity through in vitro mutagenesis in complementarity determining regions

doi: 10.7555/JBR.36.20220003
More Information
  • Corresponding author: Wei Gao and Luan Sun, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mails: gao@njmu.edu.cn and sunluan@njmu.edu.cn; 
  • Received: 2022-01-03
  • Revised: 2022-02-26
  • Accepted: 2022-03-02
  • Published: 2022-03-28
  • Issue Date: 2022-05-28
  • High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases. However, most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity maturation, which is triggered by antigen immunization. It is therefore necessary to engineer the affinity of these antibodies by way of in vitro assaying. In this study, we optimized the affinity of two human monoclonal antibodies which were isolated by phage display in a previous related study. For the 42A1 antibody, which targets the liver cancer antigen glypican-3, the variant T57H in the second complementarity-determining region of the heavy chain (CDR-H2) exhibited a 2.6-fold improvement in affinity, as well as enhanced cell-binding activity. For the I4A3 antibody to severe acute respiratory syndrome coronavirus 2, beneficial single mutations in CDR-H2 and CDR-H3 were randomly combined to select the best synergistic mutations. Among these, the mutation S53P-S98T improved binding affinity (about 3.7 fold) and the neutralizing activity (about 12 fold) compared to the parent antibody. Taken together, single mutations of key residues in antibody CDRs were enough to increase binding affinity with improved antibody functions. The mutagenic combination of key residues in different CDRs creates additive enhancements. Therefore, this study provides a safe and effective in vitro strategy for optimizing antibody affinity.


  • loading
  • [1]
    Basu K, Green EM, Cheng Y, et al. Why recombinant antibodies—benefits and applications[J]. Curr Opin Biotechnol, 2019, 60: 153–158. doi: 10.1016/j.copbio.2019.01.012
    Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases[J]. J Biomed Sci, 2020, 27(1): 1. doi: 10.1186/s12929-019-0592-z
    Urquhart L. Top companies and drugs by sales in 2020[J]. Nat Rev Drug Discov, 2021, 20(4): 253. doi: 10.1038/d41573-021-00050-6
    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315–1317. doi: 10.1126/science.4001944
    Lerner RA, Kang AS, Bain JD, et al. Antibodies without immunization[J]. Science, 1992, 258(5086): 1313–1314. doi: 10.1126/science.1455226
    Bradbury ARM, Sidhu S, Dübel S, et al. Beyond natural antibodies: the power of in vitro display technologies[J]. Nat Biotechnol, 2011, 29(3): 245–254. doi: 10.1038/nbt.1791
    Roth KDR, Wenzel EV, Ruschig M, et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy[J]. Front Cell Infect Microbiol, 2021, 11: 697876. doi: 10.3389/fcimb.2021.697876
    Sun L, Gao F, Gao Z, et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(4): e001875. doi: 10.1136/jitc-2020-001875
    Liu X, Gao F, Jiang L, et al. 32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma[J]. J Transl Med, 2020, 18(1): 295. doi: 10.1186/s12967-020-02462-1
    Li N, Wei L, Liu X, et al. A frizzled-like cysteine-rich domain in Glypican-3 mediates wnt binding and regulates hepatocellular carcinoma tumor growth in mice[J]. Hepatology, 2019, 70(4): 1231–1245. doi: 10.1002/hep.30646
    Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2[J]. Nature, 2020, 584(7819): 120–124. doi: 10.1038/s41586-020-2381-y
    Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281–292.e6. doi: 10.1016/j.cell.2020.02.058
    Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483): 1260–1263. doi: 10.1126/science.abb2507
    Gao W, Liu X, Gao F, et al. Neutralizing antibody for resisting novel coronavirus SARS-CoV-2 and application thereof (in Chinese): CN, 202010342471.6[P]. 2020-08-28.
    Gao W, Gou L, Lu M, et al. Anti-Glypican-3 acid-resistant fully-humanized antibody, immunotoxins thereof, chimeric antigen recipient cells thereof and application (in Chinese): CN, 202110303641.4[P]. 2021-07-06.
    Ministro J, Manuel AM, Goncalves J. Therapeutic antibody engineering and selection strategies[J]. Adv Biochem Eng Biotechnol, 2020, 171: 55–86. doi: 10.1007/10_2019_116
    Barbas III CF, Bain JD, Hoekstra DM, et al. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem[J]. Proc Natl Acad Sci U S A, 1992, 89(10): 4457–4461. doi: 10.1073/pnas.89.10.4457
    Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity[J]. Nat Biotechnol, 2005, 23(3): 344–348. doi: 10.1038/nbt1067
    De Wildt RMT, Mundy CR, Gorick BD, et al. Antibody arrays for high-throughput screening of antibody–antigen interactions[J]. Nat Biotechnol, 2000, 18(9): 989–994. doi: 10.1038/79494
    Hoogenboom HR. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23(9): 1105–1116. doi: 10.1038/nbt1126
    Tabasinezhad M, Talebkhan Y, Wenzel W, et al. Trends in therapeutic antibody affinity maturation: from in-vitro towards next-generation sequencing approaches[J]. Immunol Lett, 2019, 212: 106–113. doi: 10.1016/j.imlet.2019.06.009
    Wark KL, Hudson PJ. Latest technologies for the enhancement of antibody affinity[J]. Adv Drug Deliv Rev, 2006, 58(5-6): 657–670. doi: 10.1016/j.addr.2006.01.025
    Tiller KE, Chowdhury R, Li T, et al. Facile affinity maturation of antibody variable domains using natural diversity mutagenesis[J]. Front Immunol, 2017, 8: 986. doi: 10.3389/fimmu.2017.00986
    Xu JL, Davis MM. Diversity in the CDR3 region of VH is sufficient for most antibody specificities[J]. Immunity, 2000, 13(1): 37–45. doi: 10.1016/S1074-7613(00)00006-6
    Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation[J]. Nat Biotechnol, 2007, 25(10): 1171–1176. doi: 10.1038/nbt1336
    Kuroda D, Shirai H, Jacobson MP, et al. Computer-aided antibody design[J]. Protein Eng Des Sel, 2012, 25(10): 507–521. doi: 10.1093/protein/gzs024
    Pérez AMW, Sormanni P, Andersen JS, et al. In vitro and in silico assessment of the developability of a designed monoclonal antibody library[J]. MAbs, 2019, 11(2): 388–400. doi: 10.1080/19420862.2018.1556082
    Silva D, Santos G, Barroca M, et al. Inverse PCR for point mutation introduction[J]. Methods Mol Biol, 2017, 1620: 87–100. doi: 10.1007/978-1-4939-7060-5_5
    Nie J, Li Q, Wu J, et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2[J]. Emerg Microbes Infect, 2020, 9(1): 680–686. doi: 10.1080/22221751.2020.1743767
    Xiong H, Wu Y, Cao J, et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells[J]. Emerg Microbes Infect, 2020, 9(1): 2105–2113. doi: 10.1080/22221751.2020.1815589
    Hwang JK, Wang C, Du Z, et al. Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies[J]. Proc Natl Acad Sci U S A, 2017, 114(32): 8614–8619. doi: 10.1073/pnas.1709203114
    Kepler TB, Liao H, Alam SM, et al. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies[J]. Cell Host Microbe, 2014, 16(3): 304–313. doi: 10.1016/j.chom.2014.08.006
    MacCallum RM, Martin ACR, Thornton JM. Antibody-antigen interactions: contact analysis and binding site topography[J]. J Mol Biol, 1996, 262(5): 732–745. doi: 10.1006/jmbi.1996.0548
    Skamaki K, Emond S, Chodorge M, et al. In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region[J]. Proc Natl Acad Sci U S A, 2020, 117(44): 27307–27318. doi: 10.1073/pnas.2002954117
    Wei L, Chahwan R, Wang S, et al. Overlapping hotspots in CDRs are critical sites for V region diversification[J]. Proc Natl Acad Sci U S A, 2015, 112(7): E728–E737. doi: 10.1073/pnas.1500788112
    Jackson JR, Sathe G, Rosenberg M, et al. In vitro antibody maturation. Improvement of a high affinity, neutralizing antibody against IL-1 beta[J]. J Immunol, 1995, 154(7): 3310–3319. https://pubmed.ncbi.nlm.nih.gov/7897213/
    Rajpal A, Beyaz N, Haber L, et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries[J]. Proc Natl Acad Sci U S A, 2005, 102(24): 8466–8471. doi: 10.1073/pnas.0503543102
    Steidl S, Ratsch O, Brocks B, et al. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification[J]. Mol Immunol, 2008, 46(1): 135–144. doi: 10.1016/j.molimm.2008.07.013
    Rawat P, Sharma D, Srivastava A, et al. Exploring antibody repurposing for COVID-19: beyond presumed roles of therapeutic antibodies[J]. Sci Rep, 2021, 11(1): 10220. doi: 10.1038/s41598-021-89621-6
    Sharma D, Rawat P, Janakiraman V, et al. Elucidating important structural features for the binding affinity of spike - SARS-CoV-2 neutralizing antibody complexes[J]. Proteins, 2022, 90(3): 824–834. doi: 10.1002/prot.26277
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (344) PDF downloads(42) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint