Citation: | Lei Xu, Ran Li, Juan Li, Zhou Dong, Jiaxin Zong, Chuchu Tan, Zekang Ye, Lu Shi, Xiaoxuan Gong, Chunjian Li. Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS[J]. The Journal of Biomedical Research, 2022, 36(2): 109-119. DOI: 10.7555/JBR.36.20210125 |
[1] |
Savi P, Herbert JM. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis[J]. Semin Thromb Hemost, 2005, 31(2): 174–183. doi: 10.1055/s-2005-869523
|
[2] |
Gurbel PA, Bliden KP, Hiatt BL, et al. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity[J]. Circulation, 2003, 107(23): 2908–2913. doi: 10.1161/01.CIR.0000072771.11429.83
|
[3] |
Heestermans AACM, van Werkum JW, Schömig E, et al. Clopidogrel resistance caused by a failure to metabolize clopidogrel into its metabolites[J]. J Thromb Haemost, 2006, 4(5): 1143–1145. doi: 10.1111/j.1538-7836.2006.01891.x
|
[4] |
Tang M, Mukundan M, Yang J, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol[J]. J Pharmacol Exp Ther, 2006, 319(3): 1467–1476. doi: 10.1124/jpet.106.110577
|
[5] |
Kubica A, Kozinski M, Grzesk G, et al. Genetic determinants of platelet response to clopidogrel[J]. J Thromb Thrombolysis, 2011, 32(4): 459–466. doi: 10.1007/s11239-011-0611-8
|
[6] |
Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite[J]. Drug Metab Dispos, 2010, 38(1): 92–99. doi: 10.1124/dmd.109.029132
|
[7] |
Bobescu E, Covaciu A, Rus H, et al. Low response to clopidogrel in coronary artery disease[J]. Am J Ther, 2020, 27(2): e133–e141. doi: 10.1097/MJT.0000000000001099
|
[8] |
Ying L, Wang J, Li J, et al. Intensified antiplatelet therapy in patients after percutaneous coronary intervention with high on-treatment platelet reactivity: the OPTImal Management of Antithrombotic Agents (OPTIMA)-2 Trial[J]. Br J Haematol, 2022, 196(2): 424–432. doi: 10.1111/bjh.17847
|
[9] |
Zou X, Deng X, Wang Y, et al. Genetic polymorphisms of high platelet reactivity in Chinese patients with coronary heart disease under clopidogrel therapy[J]. Int J Clin Pharm, 2020, 42(1): 158–166. doi: 10.1007/s11096-019-00953-w
|
[10] |
Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis[J]. JAMA, 2010, 304(16): 1821–1830. doi: 10.1001/jama.2010.1543
|
[11] |
Price MJ, Berger PB, Teirstein PS, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial[J]. JAMA, 2011, 305(11): 1097–1105. doi: 10.1001/jama.2011.290
|
[12] |
Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS[J]. Eur J Cardiothorac Surg, 2018, 53(1): 34–78. doi: 10.1093/ejcts/ezx334
|
[13] |
Liang Y, Johnston M, Hirsh J, et al. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin[J]. J Thromb Thrombolysis, 2012, 34(4): 429–436. doi: 10.1007/s11239-012-0762-2
|
[14] |
Peer CJ, Spencer SD, VanDenBerg DAH, et al. A sensitive and rapid ultra HPLC–MS/MS method for the simultaneous detection of clopidogrel and its derivatized active thiol metabolite in human plasma[J]. J Chromatogr B, 2012, 880: 132–139. doi: 10.1016/j.jchromb.2011.11.029
|
[15] |
Karaźniewicz-Łada M, Danielak D, Teżyk A, et al. HPLC-MS/MS method for the simultaneous determination of clopidogrel, its carboxylic acid metabolite and derivatized isomers of thiol metabolite in clinical samples[J]. J Chromatogr B, 2012, 911: 105–112. doi: 10.1016/j.jchromb.2012.11.005
|
[16] |
Silvestro L, Gheorghe M, Iordachescu A, et al. Development and validation of an HPLC-MS/MS method to quantify clopidogrel acyl glucuronide, clopidogrel acid metabolite, and clopidogrel in plasma samples avoiding analyte back-conversion[J]. Anal Bioanal Chem, 2011, 401(3): 1023–1034. doi: 10.1007/s00216-011-5147-4
|
[17] |
Takahashi M, Pang H, Kawabata K, et al. Quantitative determination of clopidogrel active metabolite in human plasma by LC-MS/MS[J]. J Pharm Biomed Anal, 2008, 48(4): 1219–1224. doi: 10.1016/j.jpba.2008.08.020
|
[18] |
Li Y, Song M, Hang T. Development of an LC−MS/MS method for determination of 2-oxo-clopidogrel in human plasma[J]. J Pharm Anal, 2015, 5(1): 12–17. doi: 10.1016/j.jpha.2014.07.004
|
[19] |
Zhu Y, Zhou J. In vitro biotransformation studies of 2-oxo-clopidogrel: multiple thiolactone ring-opening pathways further attenuate prodrug activation[J]. Chem Res Toxicol, 2013, 26(1): 179–190. doi: 10.1021/tx300460k
|
[20] |
Karaźniewicz-Łada M, Danielak D, Burchardt P, et al. Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases[J]. Clin Pharmacokinet, 2014, 53(2): 155–164. doi: 10.1007/s40262-013-0105-2
|
[21] |
Tuffal G, Roy S, Lavisse M, et al. An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma[J]. Thromb Haemost, 2011, 105(4): 696–705. doi: 10.1160/TH10-09-0582
|
[22] |
Furlong MT, Savant I, Yuan M, et al. A validated HPLC-MS/MS assay for quantifying unstable pharmacologically active metabolites of clopidogrel in human plasma: application to a clinical pharmacokinetic study[J]. J Chromatogr B, 2013, 926: 36–41. doi: 10.1016/j.jchromb.2013.02.031
|
[23] |
Lyngby JG, Court MH, Lee PM. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma[J]. J Vet Cardiol, 2017, 19(4): 384–395. doi: 10.1016/j.jvc.2017.03.004
|
[24] |
Coukell AJ, Markham A. Clopidogrel[J]. Drugs, 1997, 54(5): 745–750. doi: 10.2165/00003495-199754050-00006
|
[25] |
Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway[J]. Pharmacogenet Genomics, 2010, 20(7): 463–465. doi: 10.1097/FPC.0b013e3283385420
|
[26] |
Tang W, Harris LC, Outhavong V, et al. Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill. )[J]. Plant Cell Rep, 2004, 22(12): 871–877. doi: 10.1007/s00299-004-0781-3
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Zhang Lei, McLeod Stephanie T., Vargas Rodolfo, Liu Xiaojian, Young Dorthy K., Dobbs Thomas E.. Subgroup comparison of COVID-19 case and mortality with associated factors in Mississippi: findings from analysis of the first four months of public data[J]. The Journal of Biomedical Research, 2020, 34(6): 446-457. DOI: 10.7555/JBR.34.20200135 |
[3] | Pan Wei, Miyazaki Yasuo, Tsumura Hideyo, Miyazaki Emi, Yang Wei. Identification of county-level health factors associated with COVID-19 mortality in the United States[J]. The Journal of Biomedical Research, 2020, 34(6): 437-445. DOI: 10.7555/JBR.34.20200129 |
[4] | Alexander E. Berezin, Alexander A. Kremzer, Tatayna A. Samura. Circulating thrombospondin-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease[J]. The Journal of Biomedical Research, 2016, 30(1): 32-39. DOI: 10.7555/JBR.30.20140025 |
[5] | Augustine N Odili, John O Ogedengbe, Maxwell Nwegbu, Felicia O Anumah, Samuel Asala, Jan A Staessen. Nigerian Population Research on Environment, Gene and Health (NIPREGH) - objectives and protocol[J]. The Journal of Biomedical Research, 2014, 28(5): 360-367. DOI: 10.7555/JBR.28.20130199 |
[6] | Samuel Tate, Andrea Griem, Blythe Durbin-Johnson, Clifton Watt, Saul Schaefer. Marked elevation of B-type natriuretic peptide in patients with heart failure and preserved ejection fraction[J]. The Journal of Biomedical Research, 2014, 28(4): 255-261. DOI: 10.7555/JBR.28.20140021 |
[7] | Weihua Zhou, Ji Chen. I -123 metaiodobenzylguanidine imaging for predicting ventricular arrhythmia in heart failure patients[J]. The Journal of Biomedical Research, 2013, 27(6): 460-466. DOI: 10.7555/JBR.27.20130137 |
[8] | Shujuan Zhang, Feng Zhang, Haijian Sun, Yebo Zhou, Ying Han. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin[J]. The Journal of Biomedical Research, 2012, 26(6): 425-431. DOI: 10.7555/JBR.26.20120035 |
[9] | Xi Li, Tingzhong Wang, Ke Han, Xiaozhen Zhuo, Qun Lu, Aiqun Ma. Bisoprolol reverses down-regulation of potassium channel proteins in ventricular tissues of rabbits with heart failure[J]. The Journal of Biomedical Research, 2011, 25(4): 274-279. DOI: 10.1016/S1674-8301(11)60037-7 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |
1. | Guan M, Wang Y. Common variants of vitamin D receptor gene polymorphisms and risk of gastric cancer: A meta-analysis. Medicine (Baltimore), 2024, 103(35): e39527. DOI:10.1097/MD.0000000000039527 |
2. | Abo-Amer YE, Mohamed AA, Elhoseeny MM, et al. Association Between Vitamin D Receptor Polymorphism and the Response to Helicobacter Pylori Treatment. Infect Drug Resist, 2023, 16: 4463-4469. DOI:10.2147/IDR.S414186 |
3. | Liu X, Zhou Y, Zou X. Correlation between Serum 25-Hydroxyvitamin D Levels and Gastric Cancer: A Systematic Review and Meta-Analysis. Curr Oncol, 2022, 29(11): 8390-8400. DOI:10.3390/curroncol29110661 |
4. | Nguyen MT, Huynh NNY, Nguyen DD, et al. Vitamin D intake and gastric cancer in Viet Nam: a case-control study. BMC Cancer, 2022, 22(1): 838. DOI:10.1186/s12885-022-09933-2 |
5. | Kwak JH, Paik JK. Vitamin D Status and Gastric Cancer: A Cross-Sectional Study in Koreans. Nutrients, 2020, 12(7): 2004. DOI:10.3390/nu12072004 |
6. | Durak Ş, Gheybi A, Demirkol Ş, et al. The effects of serum levels, and alterations in the genes of binding protein and receptor of vitamin D on gastric cancer. Mol Biol Rep, 2019, 46(6): 6413-6420. DOI:10.1007/s11033-019-05088-9 |
7. | Kazemian E, Akbari ME, Moradi N, et al. Vitamin D Receptor Genetic Variation and Cancer Biomarkers among Breast Cancer Patients Supplemented with Vitamin D3: A Single-Arm Non-Randomized Before and After Trial. Nutrients, 2019, 11(6): 1264. DOI:10.3390/nu11061264 |
8. | Cai H, Jing C, Chang X, et al. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J Transl Med, 2019, 17(1): 189. DOI:10.1186/s12967-019-1941-0 |