4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Lei Xu, Ran Li, Juan Li, Zhou Dong, Jiaxin Zong, Chuchu Tan, Zekang Ye, Lu Shi, Xiaoxuan Gong, Chunjian Li. Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS[J]. The Journal of Biomedical Research, 2022, 36(2): 109-119. DOI: 10.7555/JBR.36.20210125
Citation: Lei Xu, Ran Li, Juan Li, Zhou Dong, Jiaxin Zong, Chuchu Tan, Zekang Ye, Lu Shi, Xiaoxuan Gong, Chunjian Li. Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS[J]. The Journal of Biomedical Research, 2022, 36(2): 109-119. DOI: 10.7555/JBR.36.20210125

Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS

More Information
  • Corresponding author:

    Chunjian Li and Xiaoxuan Gong, Department of Cardiology, the First Affiliated Hospital of NanjingMedical University, 300 Guangzhou Road, Nanjing, Jiangsu 210009, China. Tels: +86-25-68303824 and +86-18851727059, E-mails: lijay@njmu.edu.cn and xiaoxuangong@sina.com

  • Received Date: July 25, 2021
  • Revised Date: December 11, 2021
  • Accepted Date: December 30, 2021
  • Available Online: February 27, 2022
  • Clopidogrel is a pro-drug which needs two-step metabolism to produce the active thiol metabolite. This study aimed to explore an efficient method to simultaneously determine the plasma clopidogrel, 2-oxo-clopidogrel (2-Oxo-CLP), and the clopidogrel active metabolite (CAM). A high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) was therefore developed. The analytes were extracted from plasma by using methyl tert-butyl ether (MTBE). Chromatographic separation was performed on a C18 column under an isocratic elution, accompanied with acetonitrile and deionized water containing 0.1% formic acid. After optimizing the condition of LC-MS/MS, a stable linearity was observed in the standard curves over the concentration ranges of 0.05 to 50.0 ng/mL for clopidogrel, 0.5 to 50.0 ng/mL for 2-Oxo-CLP, and 0.5 to 100 ng/mL for clopidogrel active metabolite derivative (CAMD). The retention time was 4.78 minutes, 3.79 minutes, 3.59 minutes, and 4.82 minutes for clopidogrel, 2-Oxo-CLP, CAMD, and internal standard, respectively. Both the relative standard deviation and the relative error were within the requirement of operating criteria. No significant degradation of clopidogrel, 2-Oxo-CLP, and CAMD occurred under different storage conditions. This method was successfully validated in 3 patients with coronary artery disease. The results showed that the current LC-MS/MS method was efficient for simultaneously detecting clopidogrel, 2-Oxo-CLP, and CAM with fine linearity, accuracy, precision, and stability.
  • [1]
    Savi P, Herbert JM. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis[J]. Semin Thromb Hemost, 2005, 31(2): 174–183. doi: 10.1055/s-2005-869523
    [2]
    Gurbel PA, Bliden KP, Hiatt BL, et al. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity[J]. Circulation, 2003, 107(23): 2908–2913. doi: 10.1161/01.CIR.0000072771.11429.83
    [3]
    Heestermans AACM, van Werkum JW, Schömig E, et al. Clopidogrel resistance caused by a failure to metabolize clopidogrel into its metabolites[J]. J Thromb Haemost, 2006, 4(5): 1143–1145. doi: 10.1111/j.1538-7836.2006.01891.x
    [4]
    Tang M, Mukundan M, Yang J, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol[J]. J Pharmacol Exp Ther, 2006, 319(3): 1467–1476. doi: 10.1124/jpet.106.110577
    [5]
    Kubica A, Kozinski M, Grzesk G, et al. Genetic determinants of platelet response to clopidogrel[J]. J Thromb Thrombolysis, 2011, 32(4): 459–466. doi: 10.1007/s11239-011-0611-8
    [6]
    Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite[J]. Drug Metab Dispos, 2010, 38(1): 92–99. doi: 10.1124/dmd.109.029132
    [7]
    Bobescu E, Covaciu A, Rus H, et al. Low response to clopidogrel in coronary artery disease[J]. Am J Ther, 2020, 27(2): e133–e141. doi: 10.1097/MJT.0000000000001099
    [8]
    Ying L, Wang J, Li J, et al. Intensified antiplatelet therapy in patients after percutaneous coronary intervention with high on-treatment platelet reactivity: the OPTImal Management of Antithrombotic Agents (OPTIMA)-2 Trial[J]. Br J Haematol, 2022, 196(2): 424–432. doi: 10.1111/bjh.17847
    [9]
    Zou X, Deng X, Wang Y, et al. Genetic polymorphisms of high platelet reactivity in Chinese patients with coronary heart disease under clopidogrel therapy[J]. Int J Clin Pharm, 2020, 42(1): 158–166. doi: 10.1007/s11096-019-00953-w
    [10]
    Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis[J]. JAMA, 2010, 304(16): 1821–1830. doi: 10.1001/jama.2010.1543
    [11]
    Price MJ, Berger PB, Teirstein PS, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial[J]. JAMA, 2011, 305(11): 1097–1105. doi: 10.1001/jama.2011.290
    [12]
    Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS[J]. Eur J Cardiothorac Surg, 2018, 53(1): 34–78. doi: 10.1093/ejcts/ezx334
    [13]
    Liang Y, Johnston M, Hirsh J, et al. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin[J]. J Thromb Thrombolysis, 2012, 34(4): 429–436. doi: 10.1007/s11239-012-0762-2
    [14]
    Peer CJ, Spencer SD, VanDenBerg DAH, et al. A sensitive and rapid ultra HPLC–MS/MS method for the simultaneous detection of clopidogrel and its derivatized active thiol metabolite in human plasma[J]. J Chromatogr B, 2012, 880: 132–139. doi: 10.1016/j.jchromb.2011.11.029
    [15]
    Karaźniewicz-Łada M, Danielak D, Teżyk A, et al. HPLC-MS/MS method for the simultaneous determination of clopidogrel, its carboxylic acid metabolite and derivatized isomers of thiol metabolite in clinical samples[J]. J Chromatogr B, 2012, 911: 105–112. doi: 10.1016/j.jchromb.2012.11.005
    [16]
    Silvestro L, Gheorghe M, Iordachescu A, et al. Development and validation of an HPLC-MS/MS method to quantify clopidogrel acyl glucuronide, clopidogrel acid metabolite, and clopidogrel in plasma samples avoiding analyte back-conversion[J]. Anal Bioanal Chem, 2011, 401(3): 1023–1034. doi: 10.1007/s00216-011-5147-4
    [17]
    Takahashi M, Pang H, Kawabata K, et al. Quantitative determination of clopidogrel active metabolite in human plasma by LC-MS/MS[J]. J Pharm Biomed Anal, 2008, 48(4): 1219–1224. doi: 10.1016/j.jpba.2008.08.020
    [18]
    Li Y, Song M, Hang T. Development of an LC−MS/MS method for determination of 2-oxo-clopidogrel in human plasma[J]. J Pharm Anal, 2015, 5(1): 12–17. doi: 10.1016/j.jpha.2014.07.004
    [19]
    Zhu Y, Zhou J. In vitro biotransformation studies of 2-oxo-clopidogrel: multiple thiolactone ring-opening pathways further attenuate prodrug activation[J]. Chem Res Toxicol, 2013, 26(1): 179–190. doi: 10.1021/tx300460k
    [20]
    Karaźniewicz-Łada M, Danielak D, Burchardt P, et al. Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases[J]. Clin Pharmacokinet, 2014, 53(2): 155–164. doi: 10.1007/s40262-013-0105-2
    [21]
    Tuffal G, Roy S, Lavisse M, et al. An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma[J]. Thromb Haemost, 2011, 105(4): 696–705. doi: 10.1160/TH10-09-0582
    [22]
    Furlong MT, Savant I, Yuan M, et al. A validated HPLC-MS/MS assay for quantifying unstable pharmacologically active metabolites of clopidogrel in human plasma: application to a clinical pharmacokinetic study[J]. J Chromatogr B, 2013, 926: 36–41. doi: 10.1016/j.jchromb.2013.02.031
    [23]
    Lyngby JG, Court MH, Lee PM. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma[J]. J Vet Cardiol, 2017, 19(4): 384–395. doi: 10.1016/j.jvc.2017.03.004
    [24]
    Coukell AJ, Markham A. Clopidogrel[J]. Drugs, 1997, 54(5): 745–750. doi: 10.2165/00003495-199754050-00006
    [25]
    Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway[J]. Pharmacogenet Genomics, 2010, 20(7): 463–465. doi: 10.1097/FPC.0b013e3283385420
    [26]
    Tang W, Harris LC, Outhavong V, et al. Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill. )[J]. Plant Cell Rep, 2004, 22(12): 871–877. doi: 10.1007/s00299-004-0781-3
  • Related Articles

    [1]Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040
    [2]Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091
    [3]Qiu Jinchun, Guo Hongli, Li Ling, Xu Zeyue, Xu Zejun, Jing Xia, Hu Yahui, Wen Xiaoyi, Chen Feng, Lu Xiaopeng. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy— a pilot longitudinal study[J]. The Journal of Biomedical Research, 2021, 35(1): 61-67. DOI: 10.7555/JBR.34.20200057
    [4]Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027
    [5]Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162
    [6]So-Hye Hong, Jae-Eon Lee, Hong Sung Kim, Young-Jin Jung, DaeYoun Hwang, Jae Ho Lee, Seung Yun Yang, Seung-Chul Kim, Seong-Keun Cho, Beum-Soo An. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes[J]. The Journal of Biomedical Research, 2016, 30(3): 203-208. DOI: 10.7555/JBR.30.2016K0012
    [7]Rezvan Hashemi, Sakineh Shab Bidar, Moloud Payab, Ramin Heshmat, Ahmad Reza Dorosti-Motlagh. Urgent need of vitamin D supplementation among Iranian elderly: a cross-sectional study[J]. The Journal of Biomedical Research, 2014, 28(6): 509-512. DOI: 10.7555/JBR.28.20140089
    [8]Nuan Wang, Xianming Chen, Deqin Geng, Hongli Huang, Hao Zhou. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia[J]. The Journal of Biomedical Research, 2013, 27(1): 29-36. DOI: 10.7555/JBR.27.20120047
    [9]Min Zhang, Yan Zhang, Shuaishuai Zhu, Xiaoyu Li, Qing Yang, Hui Bai, Qi Chen. Genetic variants of the class A scavenger receptor gene are associated with coronary artery disease in Chinese[J]. The Journal of Biomedical Research, 2012, 26(6): 418-424. DOI: 10.7555/JBR.26.20110116
    [10]Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106.
  • Cited by

    Periodical cited type(27)

    1. Boda VK, Yasmen N, Jiang J, et al. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev, 2024, 44(6): 2510-2544. DOI:10.1002/med.22048
    2. Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel), 2023, 15(20): 4920. DOI:10.3390/cancers15204920
    3. Zhou Y, Pereira G, Tang Y, et al. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics, 2023, 15(6): 1691. DOI:10.3390/pharmaceutics15061691
    4. Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist, 2022, 5(4): 850-872. DOI:10.20517/cdr.2022.20
    5. Gal O, Betzer O, Rousso-Noori L, et al. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. J Nanotheranostics, 2022, 3(4): 177-188. DOI:10.3390/jnt3040012
    6. Scioli MG, Terriaca S, Fiorelli E, et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci, 2021, 22(19): 10572. DOI:10.3390/ijms221910572
    7. Keyvani-Ghamsari S, Khorsandi K, Rasul A, et al. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics, 2021, 13(1): 120. DOI:10.1186/s13148-021-01107-4
    8. Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci, 2020, 6(3): 341. DOI:10.15761/jts.1000341
    9. Chandimali N, Koh H, Kim J, et al. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett, 2020, 20(4): 103. DOI:10.3892/ol.2020.11964
    10. Mukherjee S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep, 2020, 10(1): 10937. DOI:10.1038/s41598-020-67753-5
    11. Zhou JJ, Xiao Y, Li H, et al. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci, 2020, 17(6): 799-806. DOI:10.7150/ijms.43832
    12. Sun Z, Wang L, Zhou Y, et al. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol, 2020, 40(5): 767-784. DOI:10.1007/s10571-019-00771-8
    13. Zhang Q, Xu B, Chen J, et al. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal, 2020, 34(3): e23082. DOI:10.1002/jcla.23082
    14. Megías J, Martínez A, San-Miguel T, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs, 2020, 38(2): 299-310. DOI:10.1007/s10637-019-00788-2
    15. Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 139. DOI:10.1186/s13046-019-1134-y
    16. Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med, 2018, 7(1): 33. DOI:10.1186/s40169-018-0211-8
    17. Grande S, Palma A, Ricci-Vitiani L, et al. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs. Stem Cells Int, 2018, 2018: 3292704. DOI:10.1155/2018/3292704
    18. Zuccarini M, Giuliani P, Ziberi S, et al. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2): 105. DOI:10.3390/genes9020105
    19. Bhere D, Tamura K, Wakimoto H, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol, 2018, 20(2): 215-224. DOI:10.1093/neuonc/nox138
    20. Lee S, Kwon MC, Jang JP, et al. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol, 2017, 51(2): 414-424. DOI:10.3892/ijo.2017.4054
    21. Jovčevska I, Zupanec N, Urlep Ž, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8(27): 44141-44158. DOI:10.18632/oncotarget.17390
    22. Hiramatsu H, Kobayashi K, Kobayashi K, et al. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep, 2017, 7(1): 889. DOI:10.1038/s41598-017-00982-3
    23. Zheng X, Pang B, Gu G, et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int J Biol Sci, 2017, 13(2): 245-253. DOI:10.7150/ijbs.16818
    24. Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg, 2017, 127(6): 1219-1230. DOI:10.3171/2016.8.JNS161197
    25. Majewska E, Szeliga M. AKT/GSK3β Signaling in Glioblastoma. Neurochem Res, 2017, 42(3): 918-924. DOI:10.1007/s11064-016-2044-4
    26. Kanabur P, Guo S, Simonds GR, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7(52): 86406-86419. DOI:10.18632/oncotarget.13415
    27. Wang K, Kievit FM, Erickson AE, et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater, 2016, 5(24): 3173-3181. DOI:10.1002/adhm.201600684

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1384) PDF downloads (152) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return