3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Lei Xu, Ran Li, Juan Li, Zhou Dong, Jiaxin Zong, Chuchu Tan, Zekang Ye, Lu Shi, Xiaoxuan Gong, Chunjian Li. Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS[J]. The Journal of Biomedical Research, 2022, 36(2): 109-119. DOI: 10.7555/JBR.36.20210125
Citation: Lei Xu, Ran Li, Juan Li, Zhou Dong, Jiaxin Zong, Chuchu Tan, Zekang Ye, Lu Shi, Xiaoxuan Gong, Chunjian Li. Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS[J]. The Journal of Biomedical Research, 2022, 36(2): 109-119. DOI: 10.7555/JBR.36.20210125

Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS

More Information
  • Corresponding author:

    Chunjian Li and Xiaoxuan Gong, Department of Cardiology, the First Affiliated Hospital of NanjingMedical University, 300 Guangzhou Road, Nanjing, Jiangsu 210009, China. Tels: +86-25-68303824 and +86-18851727059, E-mails: lijay@njmu.edu.cn and xiaoxuangong@sina.com

  • Received Date: July 25, 2021
  • Revised Date: December 11, 2021
  • Accepted Date: December 30, 2021
  • Available Online: February 27, 2022
  • Clopidogrel is a pro-drug which needs two-step metabolism to produce the active thiol metabolite. This study aimed to explore an efficient method to simultaneously determine the plasma clopidogrel, 2-oxo-clopidogrel (2-Oxo-CLP), and the clopidogrel active metabolite (CAM). A high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) was therefore developed. The analytes were extracted from plasma by using methyl tert-butyl ether (MTBE). Chromatographic separation was performed on a C18 column under an isocratic elution, accompanied with acetonitrile and deionized water containing 0.1% formic acid. After optimizing the condition of LC-MS/MS, a stable linearity was observed in the standard curves over the concentration ranges of 0.05 to 50.0 ng/mL for clopidogrel, 0.5 to 50.0 ng/mL for 2-Oxo-CLP, and 0.5 to 100 ng/mL for clopidogrel active metabolite derivative (CAMD). The retention time was 4.78 minutes, 3.79 minutes, 3.59 minutes, and 4.82 minutes for clopidogrel, 2-Oxo-CLP, CAMD, and internal standard, respectively. Both the relative standard deviation and the relative error were within the requirement of operating criteria. No significant degradation of clopidogrel, 2-Oxo-CLP, and CAMD occurred under different storage conditions. This method was successfully validated in 3 patients with coronary artery disease. The results showed that the current LC-MS/MS method was efficient for simultaneously detecting clopidogrel, 2-Oxo-CLP, and CAM with fine linearity, accuracy, precision, and stability.
  • [1]
    Savi P, Herbert JM. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis[J]. Semin Thromb Hemost, 2005, 31(2): 174–183. doi: 10.1055/s-2005-869523
    [2]
    Gurbel PA, Bliden KP, Hiatt BL, et al. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity[J]. Circulation, 2003, 107(23): 2908–2913. doi: 10.1161/01.CIR.0000072771.11429.83
    [3]
    Heestermans AACM, van Werkum JW, Schömig E, et al. Clopidogrel resistance caused by a failure to metabolize clopidogrel into its metabolites[J]. J Thromb Haemost, 2006, 4(5): 1143–1145. doi: 10.1111/j.1538-7836.2006.01891.x
    [4]
    Tang M, Mukundan M, Yang J, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol[J]. J Pharmacol Exp Ther, 2006, 319(3): 1467–1476. doi: 10.1124/jpet.106.110577
    [5]
    Kubica A, Kozinski M, Grzesk G, et al. Genetic determinants of platelet response to clopidogrel[J]. J Thromb Thrombolysis, 2011, 32(4): 459–466. doi: 10.1007/s11239-011-0611-8
    [6]
    Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite[J]. Drug Metab Dispos, 2010, 38(1): 92–99. doi: 10.1124/dmd.109.029132
    [7]
    Bobescu E, Covaciu A, Rus H, et al. Low response to clopidogrel in coronary artery disease[J]. Am J Ther, 2020, 27(2): e133–e141. doi: 10.1097/MJT.0000000000001099
    [8]
    Ying L, Wang J, Li J, et al. Intensified antiplatelet therapy in patients after percutaneous coronary intervention with high on-treatment platelet reactivity: the OPTImal Management of Antithrombotic Agents (OPTIMA)-2 Trial[J]. Br J Haematol, 2022, 196(2): 424–432. doi: 10.1111/bjh.17847
    [9]
    Zou X, Deng X, Wang Y, et al. Genetic polymorphisms of high platelet reactivity in Chinese patients with coronary heart disease under clopidogrel therapy[J]. Int J Clin Pharm, 2020, 42(1): 158–166. doi: 10.1007/s11096-019-00953-w
    [10]
    Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis[J]. JAMA, 2010, 304(16): 1821–1830. doi: 10.1001/jama.2010.1543
    [11]
    Price MJ, Berger PB, Teirstein PS, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial[J]. JAMA, 2011, 305(11): 1097–1105. doi: 10.1001/jama.2011.290
    [12]
    Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS[J]. Eur J Cardiothorac Surg, 2018, 53(1): 34–78. doi: 10.1093/ejcts/ezx334
    [13]
    Liang Y, Johnston M, Hirsh J, et al. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin[J]. J Thromb Thrombolysis, 2012, 34(4): 429–436. doi: 10.1007/s11239-012-0762-2
    [14]
    Peer CJ, Spencer SD, VanDenBerg DAH, et al. A sensitive and rapid ultra HPLC–MS/MS method for the simultaneous detection of clopidogrel and its derivatized active thiol metabolite in human plasma[J]. J Chromatogr B, 2012, 880: 132–139. doi: 10.1016/j.jchromb.2011.11.029
    [15]
    Karaźniewicz-Łada M, Danielak D, Teżyk A, et al. HPLC-MS/MS method for the simultaneous determination of clopidogrel, its carboxylic acid metabolite and derivatized isomers of thiol metabolite in clinical samples[J]. J Chromatogr B, 2012, 911: 105–112. doi: 10.1016/j.jchromb.2012.11.005
    [16]
    Silvestro L, Gheorghe M, Iordachescu A, et al. Development and validation of an HPLC-MS/MS method to quantify clopidogrel acyl glucuronide, clopidogrel acid metabolite, and clopidogrel in plasma samples avoiding analyte back-conversion[J]. Anal Bioanal Chem, 2011, 401(3): 1023–1034. doi: 10.1007/s00216-011-5147-4
    [17]
    Takahashi M, Pang H, Kawabata K, et al. Quantitative determination of clopidogrel active metabolite in human plasma by LC-MS/MS[J]. J Pharm Biomed Anal, 2008, 48(4): 1219–1224. doi: 10.1016/j.jpba.2008.08.020
    [18]
    Li Y, Song M, Hang T. Development of an LC−MS/MS method for determination of 2-oxo-clopidogrel in human plasma[J]. J Pharm Anal, 2015, 5(1): 12–17. doi: 10.1016/j.jpha.2014.07.004
    [19]
    Zhu Y, Zhou J. In vitro biotransformation studies of 2-oxo-clopidogrel: multiple thiolactone ring-opening pathways further attenuate prodrug activation[J]. Chem Res Toxicol, 2013, 26(1): 179–190. doi: 10.1021/tx300460k
    [20]
    Karaźniewicz-Łada M, Danielak D, Burchardt P, et al. Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases[J]. Clin Pharmacokinet, 2014, 53(2): 155–164. doi: 10.1007/s40262-013-0105-2
    [21]
    Tuffal G, Roy S, Lavisse M, et al. An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma[J]. Thromb Haemost, 2011, 105(4): 696–705. doi: 10.1160/TH10-09-0582
    [22]
    Furlong MT, Savant I, Yuan M, et al. A validated HPLC-MS/MS assay for quantifying unstable pharmacologically active metabolites of clopidogrel in human plasma: application to a clinical pharmacokinetic study[J]. J Chromatogr B, 2013, 926: 36–41. doi: 10.1016/j.jchromb.2013.02.031
    [23]
    Lyngby JG, Court MH, Lee PM. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma[J]. J Vet Cardiol, 2017, 19(4): 384–395. doi: 10.1016/j.jvc.2017.03.004
    [24]
    Coukell AJ, Markham A. Clopidogrel[J]. Drugs, 1997, 54(5): 745–750. doi: 10.2165/00003495-199754050-00006
    [25]
    Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway[J]. Pharmacogenet Genomics, 2010, 20(7): 463–465. doi: 10.1097/FPC.0b013e3283385420
    [26]
    Tang W, Harris LC, Outhavong V, et al. Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill. )[J]. Plant Cell Rep, 2004, 22(12): 871–877. doi: 10.1007/s00299-004-0781-3
  • Related Articles

    [1]Pei Wang, Xiaowei Wei, Xiaojun Qu, Yefei Zhu. Potential clinical application of microRNAs in bladder cancer[J]. The Journal of Biomedical Research, 2024, 38(4): 289-306. DOI: 10.7555/JBR.37.20230245
    [2]Sahil Khurana, Ajay Pal Singh, Ashok Kumar, Rajeev Nema. Prognostic value of AKT isoforms in non-small cell lung adenocarcinoma[J]. The Journal of Biomedical Research, 2023, 37(3): 225-228. DOI: 10.7555/JBR.36.20220138
    [3]Sun Zhen, Liu Chen, Cheng Steven Y.. Identification of four novel prognosis biomarkers and potential therapeutic drugs for human colorectal cancer by bioinformatics analysis[J]. The Journal of Biomedical Research, 2021, 35(1): 21-35. DOI: 10.7555/JBR.34.20200021
    [4]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [5]Jianming Wu, Ling Li. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications[J]. The Journal of Biomedical Research, 2016, 30(5): 361-372. DOI: 10.7555/JBR.30.20150131
    [6]Tinghua Hu, Yu Yao, Shuo Yu, Hui Guo, Lili Han, Wenjuan Wang, Tao Tian, Yibin Hao, Zhiyan Liu, Kejun Nan, Shuhong Wang. Clinicopathologic significance of CXCR4 and Nrf2 in colorectal cancer[J]. The Journal of Biomedical Research, 2013, 27(4): 283-290. DOI: 10.7555/JBR.27.20130069
    [7]Songyu Cao, Cheng Wang, Xinen Huang, Juncheng Dai, Lingmin Hu, Yao Liu, Jiaping Chen, Hongxia Ma, Guangfu Jin, Zhibin Hu, Lin Xu, Hongbing Shen. Prognostic assessment of apoptotic gene polymorphisms in non-small cell lung cancer in Chinese[J]. The Journal of Biomedical Research, 2013, 27(3): 231-238. DOI: 10.7555/JBR.27.20130014
    [8]Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004
    [9]Lihong Chen, Lianxiang Li, Feng Chen, Dalin He. Immunoexpression and prognostic role of p53 in different subtypes of epithelial ovarian carcinoma[J]. The Journal of Biomedical Research, 2012, 26(4): 274-277. DOI: 10.7555/JBR.26.20110103
    [10]Shuangshuang Wang, Ping Zhao, Brian Cao. Development and optimization of an antibody array method for potential cancer biomarker detection[J]. The Journal of Biomedical Research, 2011, 25(1): 63-70. DOI: 10.1016/S1674-8301(11)60008-0
  • Cited by

    Periodical cited type(6)

    1. Bühler M, Fahrländer J, Sauter A, et al. GPER1 links estrogens to centrosome amplification and chromosomal instability in human colon cells. Life Sci Alliance, 2022, 6(1): e202201499. DOI:10.26508/lsa.202201499. Print 2023 Jan
    2. Bühler M, Stolz A. Estrogens-Origin of Centrosome Defects in Human Cancer?. Cells, 2022, 11(3): 432. DOI:10.3390/cells11030432
    3. Kalkan BM, Ozcan SC, Quintyne NJ, et al. Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel), 2022, 14(2): 442. DOI:10.3390/cancers14020442
    4. Jia ZH, Wang XG, Zhang H. Overcome cancer drug resistance by targeting epigenetic modifications of centrosome. Cancer Drug Resist, 2019, 2(2): 210-224. DOI:10.20517/cdr.2018.010
    5. Li JA, Liu BC, Song Y, et al. Cyclin A2 regulates symmetrical mitotic spindle formation and centrosome amplification in human colon cancer cells. Am J Transl Res, 2018, 10(8): 2669-2676.
    6. Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol, 2018, 147: 1-8. DOI:10.1016/j.bcp.2017.11.003

    Other cited types(0)

Catalog

    Corresponding author: Chunjian Li, lijay@njmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1429) PDF downloads (166) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return