• ISSN 1674-8301
  • CN 32-1810/R
Volume 36 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Marta Obara-Michlewska. The contribution of astrocytes to obesity-associated metabolic disturbances[J]. The Journal of Biomedical Research, 2022, 36(5): 299-311. doi: 10.7555/JBR.36.20200020
Citation: Marta Obara-Michlewska. The contribution of astrocytes to obesity-associated metabolic disturbances[J]. The Journal of Biomedical Research, 2022, 36(5): 299-311. doi: 10.7555/JBR.36.20200020

The contribution of astrocytes to obesity-associated metabolic disturbances

doi: 10.7555/JBR.36.20200020
More Information
  • Corresponding author: Marta Obara-Michlewska, Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, Warsaw 02-106, Poland. Tel/Fax: +48-22-6046416, E-mail: mobara@imdik.pan.pl
  • Received: 2022-01-26
  • Revised: 2022-06-21
  • Accepted: 2022-07-11
  • Published: 2022-08-28
  • Issue Date: 2022-09-28
  • Obesity is a worldwide health, economic and social concern, despite efforts made to counteract the spreading wave of eating and nourishment-associated disorders. The review aims to show how the glial cells, astrocytes, contribute to the central regulation of appetite and energy metabolism. The hypothalamus is the brain center responsible for nutrients and nutritional hormone sensing, signal processing, and execution of metabolic and behavioral responses, directed at sustaining energy homeostasis. The astrocytes are endowed with receptors, transporters and enzymatic machinery responsible for glucose, lactate, fatty acids, ketone bodies, as well as leptin or ghrelin transport and metabolism, and that render them supporters and partners for neurons in governing the brain and body energy intake and expenditure. However, the role of astrocytes associated with brain energy metabolism reaches far beyond simple fuel contingent—they contribute to cognitive performance. The cognitive decline which often accompanies high fat- and/or high-calorie diets and correlates with neuroinflammation and astrogliosis, is a major concern. The last two decades of research enabled us to acknowledge the astroglia in obesity-associated dysfunctions and to investigate astrocytes as contributors to the pathology, as well as targets for therapy.

     

  • CLC number: R589, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet, 2019, 393(10184): 1958–1972. doi: 10.1016/S0140-6736(19)30041-8
    [2]
    Albuquerque D, Nóbrega C, Manco L, et al. The contribution of genetics and environment to obesity[J]. Brit Med Bull, 2017, 123(1): 159–173. doi: 10.1093/bmb/ldx022
    [3]
    Golden A, Kessler C. Obesity and genetics[J]. J Am Assoc Nurse Pract, 2020, 32(7): 493–496. doi: 10.1097/JXX.0000000000000447
    [4]
    Liu T, Xu Y, Yi C, et al. The hypothalamus for whole-body physiology: from metabolism to aging[J]. Protein Cell, 2022, 13(6): 394–421. doi: 10.1007/s13238-021-00834-x
    [5]
    Vettori A, Pompucci G, Paolini B, et al. Genetic background, nutrition and obesity: a review[J]. Eur Rev Med Pharmacol Sci, 2019, 23(4): 1751–1761. doi: 10.26355/eurrev_201902_17137
    [6]
    Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans[J]. Nature, 1997, 387(6636): 903–908. doi: 10.1038/43185
    [7]
    Argente-Arizón P, Freire-Regatillo A, Argente J, et al. Role of non-neuronal cells in body weight and appetite control[J]. Front Endocrinol, 2015, 6: 42. doi: 10.3389/fendo.2015.00042
    [8]
    Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future[J]. Annu Rev Pathol, 2018, 13: 379–394. doi: 10.1146/annurev-pathol-051217
    [9]
    Lyon KA, Allen NJ. From synapses to circuits, astrocytes regulate behavior[J]. Front Neural Circuits, 2022, 15: 786293. doi: 10.3389/fncir.2021.786293
    [10]
    Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2020, 19(9): 609–633. doi: 10.1038/s41573-020-0072-x
    [11]
    Browning KN, Verheijden S, Boeckxstaens GE. The Vagus nerve in appetite regulation, mood, and intestinal inflammation[J]. Gastroenterology, 2017, 152(4): 730–744. doi: 10.1053/j.gastro.2016.10.046
    [12]
    Yoo ES, Yu J, Sohn JW. Neuroendocrine control of appetite and metabolism[J]. Exp Mol Med, 2021, 53(4): 505–516. doi: 10.1038/s12276-021-00597-9
    [13]
    González-Jiménez, E. Molecular mechanisms involved in the regulation of food intake[M]//Nóbrega C, Rodriguez-López R. Molecular Mechanisms Underpinning the Development of Obesity. Cham: Springer, 2014: 87–100.
    [14]
    Pu S, Dube MG, Edwards TG, et al. Disruption of neural signaling within the hypothalamic ventromedial nucleus upregulates galanin gene expression in association with hyperphagia: an in situ hybridization analysis[J]. Mol Brain Res, 1999, 64(1): 85–91. doi: 10.1016/s0169-328x(98)00309-x
    [15]
    Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity[J]. Dis Models Mech, 2017, 10(6): 679–689. doi: 10.1242/dmm.026609
    [16]
    Caruso C, Durand D, Schiöth HB, et al. Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-γ in astrocytes[J]. Endocrinology, 2007, 148(10): 4918–4926. doi: 10.1210/en.2007-0366
    [17]
    Zhang L, Hernandez-Sanchez D, Herzog H. Regulation of feeding-related behaviors by arcuate neuropeptide Y neurons[J]. Endocrinology, 2019, 160(6): 1411–1420. doi: 10.1210/en.2019-00056
    [18]
    Wolak ML, DeJoseph MR, Cator AD, et al. Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry[J]. J Comp Neurol, 2003, 464(3): 285–311. doi: 10.1002/cne.10823
    [19]
    Kreutzer C, Peters S, Schulte DM, et al. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors[J]. Diabetes, 2017, 66(9): 2407–2415. doi: 10.2337/db17-0067
    [20]
    Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis[J]. Front Neurosci, 2014, 8: 313. doi: 10.3389/fnins.2014.00313
    [21]
    Macvicar BA, Newman EA. Astrocyte regulation of blood flow in the brain[J]. Cold Spring Harb Perspect Biol, 2015, 7(5): a020388. doi: 10.1101/cshperspect.a020388
    [22]
    Koepsell H. Glucose transporters in brain in health and disease[J]. Pflügers Arch Eur J Physiol, 2020, 472(9): 1299–1343. doi: 10.1007/s00424-020-02441-x
    [23]
    Chari M, Yang CS, Lam CKL, et al. Glucose transporter-1 in the hypothalamic glial cells mediates glucose sensing to regulate glucose production in vivo[J]. Diabetes, 2011, 60(7): 1901–1906. doi: 10.2337/db11-0120
    [24]
    Allard C, Carneiro L, Grall S, et al. Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion[J]. J Cereb Blood Flow Metab, 2014, 34(2): 339–346. doi: 10.1038/jcbfm.2013.206
    [25]
    Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration[J]. EMBO J, 2017, 36(11): 1474–1492. doi: 10.15252/embj.201695810
    [26]
    Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signaling molecule[J]. Nat Rev Neurosci, 2018, 19(4): 235–249. doi: 10.1038/nrn.2018.19
    [27]
    Falkowska A, Gutowska I, Goschorska M, et al. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism[J]. Int J Mol Sci, 2015, 16(11): 25959–25981. doi: 10.3390/ijms161125939
    [28]
    Freire-Regatillo A, Argente-Arizón P, Argente J, et al. Non-neuronal cells in the hypothalamic adaptation to metabolic signals[J]. Front Endocrinol, 2017, 8: 51. doi: 10.3389/fendo.2017.00051
    [29]
    Wang Q, Hu Y, Wan J, et al. Lactate: a novel signaling molecule in synaptic plasticity and drug addiction[J]. BioEssays, 2019, 41(8): 1900008. doi: 10.1002/bies.201900008
    [30]
    Parsons MP, Hirasawa M. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal[J]. J Neurosci, 2010, 30(24): 8061–8070. doi: 10.1523/JNEUROSCI.5741-09.2010
    [31]
    Morita M, Ikeshima-Kataoka H, Kreft M, et al. Metabolic plasticity of astrocytes and aging of the brain[J]. Int J Mol Sci, 2019, 20(4): 941. doi: 10.3390/ijms20040941
    [32]
    Qiu J, Zhang C, Borgquist A, et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels[J]. Cell Metab, 2014, 19(4): 682–693. doi: 10.1016/j.cmet.2014.03.004
    [33]
    García-Cáceres C, Fuente-Martín E, Argente J, et al. Emerging role of glial cells in the control of body weight[J]. Mol Metab, 2012, 1(1–2): 37–46. doi: 10.1016/j.molmet.2012.07.001
    [34]
    Gray SM, Meijer RI, Barrett EJ. Insulin regulates brain function, but how does it get there?[J]. Diabetes, 2014, 63(12): 3992–3997. doi: 10.2337/db14-0340
    [35]
    Pomytkin I, Costa-Nunes JP, Kasatkin V, et al. Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment[J]. CNS Neurosci Ther, 2018, 24(9): 763–774. doi: 10.1111/cns.12866
    [36]
    Fernandez AM, Hernandez-Garzón E, Perez-Domper P, et al. Insulin regulates astrocytic glucose handling through cooperation with IGF-I[J]. Diabetes, 2017, 66(1): 64–74. doi: 10.2337/db16-0861
    [37]
    Logan S, Pharaoh GA, Marlin MC, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes[J]. Mol Metab, 2018, 9: 141–155. doi: 10.1016/j.molmet.2018.01.013
    [38]
    Ratcliffe LE, Villaseñor IV, Jennings L, et al. Loss of IGF1R in human astrocytes alters complex I activity and support for neurons[J]. Neuroscience, 2018, 390: 46–59. doi: 10.1016/J.NEUROSCIENCE.2018.07.029
    [39]
    Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behavior[J]. Nat Metab, 2019, 1(2): 201–211. doi: 10.1038/s42255-018-0031-6
    [40]
    Manaserh IH, Chikkamenahalli L, Ravi S, et al. Ablating astrocyte insulin receptors leads to delayed puberty and hypogonadism in mice[J]. PLoS Biol, 2019, 17(3): e3000189. doi: 10.1371/journal.pbio.3000189
    [41]
    Cai W, Xue C, Sakaguchi M, et al. Insulin regulates astrocyte gliotransmission and modulates behavior[J]. J Clin Invest, 2018, 128(7): 2914–2926. doi: 10.1172/JCI99366
    [42]
    Bruce KD, Zsombok A, Eckel RH. Lipid processing in the brain: a key regulator of systemic metabolism[J]. Front Endocrinol, 2017, 8: 60. doi: 10.3389/fendo.2017.00060
    [43]
    Wang H, Eckel RH. What are lipoproteins doing in the brain?[J]. Trends Endocrinol Metab, 2014, 25(1): 8–14. doi: 10.1016/j.tem.2013.10.003
    [44]
    Rhea EM, Banks WA. Interactions of lipids, lipoproteins, and apolipoproteins with the blood-brain barrier[J]. Pharm Res, 2021, 38(9): 1469–1475. doi: 10.1007/s11095-021-03098-6
    [45]
    Shen L, Tso P, Woods SC, et al. Brain apolipoprotein E: an important regulator of food intake in rats[J]. Diabetes, 2008, 57(8): 2092–2098. doi: 10.2337/db08-0291
    [46]
    Ebrahimi M, Yamamoto Y, Sharifi K, et al. Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons[J]. GLIA, 2016, 64(1): 48–62. doi: 10.1002/glia.22902
    [47]
    Castellanos DB, Martín-Jiménez CA, Pinzón A, et al. Metabolomic analysis of human astrocytes in lipotoxic condition: potential biomarker identification by machine learning modelling[J]. Biomolecules, 2022, 12(7): 986. doi: 10.3390/biom12070986
    [48]
    Heni M, Eckstein SS, Schittenhelm J, et al. Ectopic fat accumulation in human astrocytes impairs insulin action[J]. Roy Soc Open Sci, 2020, 7(9): 200701. doi: 10.1098/rsos.200701
    [49]
    Gao Y, Layritz C, Legutko B, et al. Disruption of lipid uptake in astroglia exacerbates diet-induced obesity[J]. Diabetes, 2017, 66(10): 2555–2563. doi: 10.2337/db16-1278
    [50]
    Jensen NJ, Wodschow HZ, Nilsson M, et al. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(22): 8767. doi: 10.3390/ijms21228767
    [51]
    Le Foll C, Levin BE. Fatty acid-induced astrocyte ketone production and the control of food intake[J]. Am J Physiol Regul Integr Comp Physiol, 2016, 310(11): R1186–R1192. doi: 10.1152/ajpregu.00113.2016
    [52]
    Ferris HA, Perry RJ, Moreira GV, et al. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism[J]. Proc Natl Acad Sci U S A, 2017, 114(5): 1189–1194. doi: 10.1073/pnas.1620506114
    [53]
    Suzuki R, Ferris HA, Chee MJ, et al. Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function[J]. PLoS Biol, 2013, 11(4): e1001532. doi: 10.1371/journal.pbio.1001532
    [54]
    Govindarajulu M, Pinky PD, Bloemer J, et al. Signaling mechanisms of selective PPAR γ modulators in alzheimer's disease[J]. PPAR Res, 2018, 2018: 2010675. doi: 10.1155/2018/2010675
    [55]
    Lu M, Sarruf DA, Talukdar S, et al. Brain PPAR-γ promotes obesity and is required for the insuling-sensitizing effect of thiazolidinediones[J]. Nat Med, 2011, 17(5): 618–622. doi: 10.1038/nm.2332
    [56]
    Fernandez MO, Hsueh K, Park HT, et al. Astrocyte-specific deletion of peroxisome-proliferator activated receptor-γ impairs glucose metabolism and estrous cycling in female mice[J]. J Endocr Soc, 2017, 1(11): 1332–1350. doi: 10.1210/js.2017-00242
    [57]
    Lam YY, Tsai SF, Chen P, et al. Pioglitazone rescues high-fat diet-induced depression-like phenotypes and hippocampal astrocytic deficits in mice[J]. Biomed Pharmacother, 2021, 140: 111734. doi: 10.1016/j.biopha.2021.111734
    [58]
    Xu J, Chavis JA, Racke MK, et al. Peroxisome proliferator-activated receptor-α and retinoid X receptor agonists inhibit inflammatory responses of astrocytes[J]. J Neuroimmunol, 2006, 176(1-2): 95–105. doi: 10.1016/j.jneuroim.2006.04.019
    [59]
    Chistyakov DV, Aleshin SE, Astakhova AA, et al. Regulation of peroxisome proliferator-activated receptors (PPAR) α and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists[J]. J Neurochem, 2015, 134(1): 113–124. doi: 10.1111/jnc.13101
    [60]
    Lee SJ, Verma S, Simonds SE, et al. Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice[J]. J Neurosci, 2013, 33(38): 15306–15317. doi: 10.1523/JNEUROSCI.0837-13.2013
    [61]
    Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord[J]. Neuron, 1998, 21(6): 1375–1385. doi: 10.1016/s0896-6273(00)80656-x
    [62]
    Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity[J]. Nat Rev Endocrinol, 2017, 13(6): 338–351. doi: 10.1038/nrendo.2016.222
    [63]
    Hsuchou H, He Y, Kastin AJ, et al. Obesity induces functional astrocytic leptin receptors in hypothalamus[J]. Brain, 2009, 132(4): 889–902. doi: 10.1093/brain/awp029
    [64]
    Kim JG, Suyama S, Koch M, et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding[J]. Nat Neurosci, 2014, 17(7): 908–910. doi: 10.1038/nn.3725
    [65]
    Gruber T, Pan C, Contreras RE, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension[J]. Cell Metab, 2021, 33(6): 1155–1170.e10. doi: 10.1016/j.cmet.2021.04.007
    [66]
    Worker CJ, Li W, Feng C, et al. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet[J]. Am J Physiol Endocrinol Metab, 2020, 318(5): E765–E778. doi: 10.1152/ajpendo.00406.2019
    [67]
    Domingues JT, Wajima CS, Cesconetto PA, et al. Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats[J]. Mol Cell Endocrinol, 2018, 478: 62–76. doi: 10.1016/j.mce.2018.07.008
    [68]
    Stepien BK, Huttner WB. Transport, metabolism, and function of thyroid hormones in the developing mammalian brain[J]. Front Endocrinol, 2019, 10: 209. doi: 10.3389/fendo.2019.00209
    [69]
    Noda M. Glioendocrine system: effects of thyroid hormones in glia and their functions in the central nervous system[J]. Med Univ, 2020, 3(1): 1–11. doi: 10.2478/medu-2020-0001
    [70]
    Fuente-Martín E, García-Cáceres C, Argente-Arizón P, et al. Ghrelin regulates glucose and glutamate transporters in hypothalamic astrocytes[J]. Sci Rep, 2016, 6: 23673. doi: 10.1038/srep23673
    [71]
    Varela L, Stutz B, Song JE, et al. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice[J]. J Clin Invest, 2021, 131(10): e144239. doi: 10.1172/JCI144239
    [72]
    Arruda AP, Milanski M, Coope A, et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion[J]. Endocrinology, 2011, 152(4): 1314–1326. doi: 10.1210/en.2010-0659
    [73]
    Douglass JD, Dorfman MD, Thaler JP. Glia: silent partners in energy homeostasis and obesity pathogenesis[J]. Diabetologia, 2017, 60(2): 226–236. doi: 10.1007/s00125-016-4181-3
    [74]
    Dionysopoulou S, Charmandari E, Bargiota A, et al. The role of hypothalamic inflammation in diet-induced obesity and its association with cognitive and mood disorders[J]. Nutrients, 2021, 13(2): 498. doi: 10.3390/nu13020498
    [75]
    Horvath TL, Sarman B, García-Cáceres C, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity[J]. Proc Natl Acad Sci U S A, 2010, 107(33): 14875–14880. doi: 10.1073/pnas.1004282107
    [76]
    Bondan EF, Cardoso CV, De Fátima Monteiro Martins M, et al. Memory impairments and increased GFAP expression in hippocampal astrocytes following hypercaloric diet in rats[J]. Arq Neuro-Psiquiat, 2019, 77(9): 601–608. doi: 10.1590/0004-282X20190091
    [77]
    Huang H, Tsai SF, Wu HT, et al. Chronic exposure to high fat diet triggers myelin disruption and interleukin-33 upregulation in hypothalamus[J]. BMC Neurosci, 2019, 20(1): 33. doi: 10.1186/s12868-019-0516-6
    [78]
    Thaler JP, Yi C, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans[J]. J Clin Invest, 2012, 122(1): 153–162. doi: 10.1172/JCI59660
    [79]
    Jin S, Kim KK, Park BS, et al. Function of astrocyte MyD88 in high-fat-diet-induced hypothalamic inflammation[J]. J Neuroinflammation, 2020, 17(1): 195. doi: 10.1186/s12974-020-01846-w
    [80]
    Tsai SF, Wu HT, Chen P, et al. High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice[J]. Brain Res, 2018, 1700: 66–77. doi: 10.1016/j.brainres.2018.07.017
    [81]
    Fuente-Martín E, García-Cáceres C, Díaz F, et al. Hypothalamic inflammation without Astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats[J]. Endocrinology, 2013, 154(7): 2318–2330. doi: 10.1210/en.2012-2196
    [82]
    Martin-Jiménez CA, García-Vega Á, Cabezas R, et al. Astrocytes and endoplasmic reticulum stress: a bridge between obesity and neurodegenerative diseases[J]. Prog Neurobiol, 2017, 158: 45–68. doi: 10.1016/j.pneurobio.2017.08.001
    [83]
    Chen W, Balland E, Cowley MA. Hypothalamic insulin resistance in obesity: effects on glucose homeostasis[J]. Neuroendocrinology, 2017, 104(4): 364–381. doi: 10.1159/000455865
    [84]
    Douglass JD, Dorfman MD, Fasnacht R, et al. Astrocyte IKKβ/NF-ΚB signaling is required for diet-induced obesity and hypothalamic inflammation[J]. Mol Metab, 2017, 6(4): 366–373. doi: 10.1016/j.molmet.2017.01.010
    [85]
    Tirou L, Russo M, Faure H, et al. Sonic hedgehog receptor patched deficiency in astrocytes enhances glucose metabolism in mice[J]. Mol Metab, 2021, 47: 101172. doi: 10.1016/j.molmet.2021.101172
    [86]
    Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity[J]. BioMed Res Int, 2011, 2011: 197636. doi: 10.1155/2011/197636
    [87]
    Barrett P, Mercer JG, Morgan PJ. Preclinical models for obesity research[J]. Dis Mod Mech, 2016, 9(11): 1245–1255. doi: 10.1242/dmm.026443
    [88]
    Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11): 2579. doi: 10.3390/nu11112579
    [89]
    Soontornniyomkij V, Kesby JP, Soontornniyomkij B, et al. Age and high-fat diet effects on glutamine synthetase immunoreactivity in liver and hippocampus and recognition memory in mice[J]. Curr Aging Sci, 2016, 9(4): 301–309. doi: 10.2174/1874609809666160413113311
    [90]
    Lau BK, Murphy-Royal C, Kaur M, et al. Obesity-induced astrocyte dysfunction impairs heterosynaptic plasticity in the orbitofrontal cortex[J]. Cell Rep, 2021, 36(7): 109563. doi: 10.1016/j.celrep.2021.109563
    [91]
    Sandoval-Salazar C, Ramírez-Emiliano J, Trejo-Bahena A, et al. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats[J]. Biol Res, 2016, 49: 15. doi: 10.1186/s40659-016-0075-6
    [92]
    Sickmann HM, Waagepetersen HS, Schousboe A, et al. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis[J]. J Cereb Blood Flow Metab, 2010, 30(8): 1527–1537. doi: 10.1038/jcbfm.2010.61
    [93]
    Popov A, Brazhe N, Fedotova A, et al. A high-fat diet changes astrocytic metabolism to enhance synaptic plasticity and promote exploratory behavior[J]. Acta Physiol (Oxf), 2022, 236(1): e13847. doi: 10.1111/apha.13847
    [94]
    Lorenzo PI, Vazquez EM, López-Noriega L, et al. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity[J]. Theranostics, 2021, 11(14): 6983–7004. doi: 10.7150/thno.57237
    [95]
    Bobbo VC, Engel DF, Jara CP, et al. Interleukin-6 actions in the hypothalamus protects against obesity and is involved in the regulation of neurogenesis[J]. J Neuroinflammation, 2021, 18(1): 192. doi: 10.1186/s12974-021-02242-8
    [96]
    Farr OM, Li CSR, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging[J]. Metabolism, 2016, 65(5): 699–713. doi: 10.1016/j.metabol.2016.02.002
    [97]
    Suleiman J, Mohamed M, Bakar A. A systematic review on different models of inducing obesity in animals: advantages and limitations[J]. J Adv Vet Anim Res, 2020, 7(1): 103–114. doi: 10.5455/javar.2020.g399
    [98]
    Doulberis M, Papaefthymiou A, Polyzos SA, et al. Rodent models of obesity[J]. Minerva Endocrinol, 2020, 45(3): 243–263. doi: 10.23736/S0391-1977.19.03058-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (114) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return