• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Zhang Jiarong, Sun Hui, Pei Wei, Jiang Huijun, Chen Jin. Nanobody-based immunosensing methods for safeguarding public health[J]. The Journal of Biomedical Research, 2021, 35(4): 318-326. doi: 10.7555/JBR.35.20210108
Citation: Zhang Jiarong, Sun Hui, Pei Wei, Jiang Huijun, Chen Jin. Nanobody-based immunosensing methods for safeguarding public health[J]. The Journal of Biomedical Research, 2021, 35(4): 318-326. doi: 10.7555/JBR.35.20210108

Nanobody-based immunosensing methods for safeguarding public health

doi: 10.7555/JBR.35.20210108
More Information
  • Corresponding author: Jin Chen, School of Public Health, Nanjing Medical University, Longmian Avenue 101, Nanjing, Jiangsu 211166, China. Tel: +86-25-86868248, E-mail: jchen@njmu.edu.cn or okachen30@gmail.com
  • Received: 2021-07-01
  • Revised: 2021-07-13
  • Accepted: 2021-07-14
  • Published: 2021-07-28
  • Issue Date: 2021-07-28
  • Immunosensing methods are biosensing techniques based on specific recognition of an antigen–antibody immunocomplex, which have become commonly used in safeguarding public health. Taking advantage of antibody-related biotechnological advances, the utilization of an antigen-binding fragment of a heavy-chain-only antibody termed as 'nanobody' holds significant biomedical potential. Compared with the conventional full-length antibody, a single-domain nanobody retaining cognate antigen specificity possesses remarkable physicochemical stability and structural adaptability, which enables a flexible and efficient molecular design of the immunosensing strategy. This minireview aims to summarize the recent progress in immunosensing methods using nanobody targeting tumor markers, environmental pollutants, and foodborne microbes.


  • loading
  • [1]
    Balayan S, Chauhan N, Chandra R, et al. Recent advances in developing biosensing based platforms for neonatal sepsis[J]. Biosens Bioelectron, 2020, 169: 112552. doi: 10.1016/j.bios.2020.112552
    Jiang XS, Li DY, Xu X, et al. Immunosensors for detection of pesticide residues[J]. Biosens Bioelectron, 2008, 23(11): 1577–1587. doi: 10.1016/j.bios.2008.01.035
    Prattis I, Hui E, Gubeljak P, et al. Graphene for biosensing applications in point-of-care testing[J]. Trends Biotechnol, 2021, S0167-7799(21)00011-1. doi: 10.1016/j.tibtech.2021.01.005
    Yao L, He L, Yang Y, et al. Nanobiochar paper based electrochemical immunosensor for fast and ultrasensitive detection of microcystin-LR[J]. Sci Total Environ, 2021, 750: 141692. doi: 10.1016/j.scitotenv.2020.141692
    Ye L, Zhao G, Dou W. An electrochemical immunoassay for Escherichia coli O157: H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles[J]. Talanta, 2018, 182: 354–362. doi: 10.1016/j.talanta.2018.01.095
    Zhang S, Chen Y, Huang Y, et al. Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection[J]. Biosens Bioelectron, 2020, 159: 112201. doi: 10.1016/j.bios.2020.112201
    Cheng N, Song Y, Shi Q, et al. Au@Pd nanopopcorn and aptamer nanoflower assisted lateral flow strip for thermal detection of exosomes[J]. Anal Chem, 2019, 91(21): 13986–13993. doi: 10.1021/acs.analchem.9b03562
    Fan Y, Shi S, Ma J, et al. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125[J]. Biosens Bioelectron, 2019, 135: 1–7. doi: 10.1016/j.bios.2019.03.063
    Xie Y, Zhang M, Bin Q, et al. Photoelectrochemical immunosensor based on CdSe@BiVO4 Co-sensitized TiO2 for carcinoembryonic antigen[J]. Biosens Bioelectron, 2020, 150: 111949. doi: 10.1016/j.bios.2019.111949
    Hu M, Wang Y, Yang J, et al. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt[J]. Biosens Bioelectron, 2019, 142: 111554. doi: 10.1016/j.bios.2019.111554
    Zhao W, Xu Y, Kang T, et al. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@SiO2 by CdTe@ZnS quantum dots[J]. Biosens Bioelectron, 2020, 155: 112102. doi: 10.1016/j.bios.2020.112102
    Ruan X, Wang Y, Kwon E, et al. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor[J]. Biosens Bioelectron, 2021, 184: 113238. doi: 10.1016/j.bios.2021.113238
    Kaushik S, Tiwari UK, Pal SS, et al. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets[J]. Biosens Bioelectron, 2019, 126: 501–509. doi: 10.1016/j.bios.2018.11.006
    Farka Z, Juřík T, Kovář D, et al. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges[J]. Chem Rev, 2017, 117(15): 9973–10042. doi: 10.1021/acs.chemrev.7b00037
    Kylilis N, Riangrungroj P, Lai HE, et al. Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications[J]. ACS Sens, 2019, 4(2): 370–378. doi: 10.1021/acssensors.8b01163
    Chen K, Xue J, Zhou Q, et al. Coupling metal-organic framework nanosphere and nanobody for boosted photoelectrochemical immunoassay of Human Epididymis Protein 4[J]. Anal Chim Acta, 2020, 1107: 145–154. doi: 10.1016/j.aca.2020.02.011
    Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363(6428): 446–448. doi: 10.1038/363446a0
    Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies' singular traits[J]. Annu Rev Immunol, 2018, 36: 695–715. doi: 10.1146/annurev-immunol-042617-053327
    Li SF, Zhang W, Jiang P, et al. Nanobody against the E7 oncoprotein of human papillomavirus 16[J]. Mol Immunol, 2019, 109: 12–19. doi: 10.1016/j.molimm.2019.02.022
    Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions[J]. Cell, 2019, 177(3): 524–540. doi: 10.1016/j.cell.2019.03.016
    Liu M, Li L, Jin D, et al. Nanobody-A versatile tool for cancer diagnosis and therapeutics[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2021, 13(4): e1697. doi: 10.1002/wnan.1697
    Anderson GP, Liu JL, Hale ML, et al. Development of antiricin single domain antibodies toward detection and therapeutic reagents[J]. Anal Chem, 2008, 80(24): 9604–9611. doi: 10.1021/ac8019398
    Buser DP, Schleicher KD, Prescianotto-Baschong C, et al. A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface[J]. Proc Natl Acad Sci USA, 2018, 115(27): E6227–E6236. doi: 10.1073/pnas.1801865115
    De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools[J]. Trends Biotechnol, 2014, 32(5): 263–270. doi: 10.1016/j.tibtech.2014.03.001
    Jaria G, Calisto V, Otero M, et al. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)-a practical overview[J]. Anal Bioanal Chem, 2020, 412(17): 3983–4008. doi: 10.1007/s00216-020-02509-8
    Li D, Morisseau C, McReynolds CB, et al. Development of improved double-nanobody sandwich ELISAs for human soluble epoxide hydrolase detection in peripheral blood mononuclear cells of diabetic patients and the prefrontal cortex of multiple sclerosis patients[J]. Anal Chem, 2020, 92(10): 7334–7342. doi: 10.1021/acs.analchem.0c01115
    Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins[J]. J Allergy Clin Immunol, 2010, 125(S2): S41–S52. doi: 10.1016/j.jaci.2009.09.046
    He J, Ma S, Wu S, et al. Construction of immunomagnetic particles with high stability in stringent conditions by site-directed immobilization of multivalent nanobodies onto bacterial magnetic particles for the environmental detection of tetrabromobisphenol-A[J]. Anal Chem, 2020, 92(1): 1114–1121. doi: 10.1021/acs.analchem.9b04177
    Wang F, Li Z, Yang Y, et al. Chemiluminescent enzyme immunoassay and bioluminescent enzyme immunoassay for tenuazonic acid mycotoxin by exploitation of nanobody and nanobody-nanoluciferase fusion[J]. Anal Chem, 2020, 92(17): 11935–11942. doi: 10.1021/acs.analchem.0c02338
    Burman B, Pesci G, Zamarin D. Newcastle disease virus at the forefront of cancer immunotherapy[J]. Cancers (Basel), 2020, 12(12): 3552. doi: 10.3390/cancers12123552
    Sheng Y, Wang K, Lu Q, et al. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay[J]. J Nanobiotechnology, 2019, 17(1): 35. doi: 10.1186/s12951-019-0468-0
    Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection[J]. Biosens Bioelectron, 2020, 159: 112214. doi: 10.1016/j.bios.2020.112214
    Li GH, Zhu M, Ma L, et al. Generation of small single domain nanobody binders for sensitive detection of testosterone by electrochemical impedance spectroscopy[J]. ACS Appl Mater Interfaces, 2016, 8(22): 13830–13839. doi: 10.1021/acsami.6b04658
    Oloketuyi S, Mazzega E, Zavašnik J, et al. Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles[J]. Biosens Bioelectron, 2020, 154: 112052. doi: 10.1016/j.bios.2020.112052
    Zakeri B, Fierer JO, Celik E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J]. Proc Natl Acad Sci USA, 2012, 109(12): E690–E697. doi: 10.1073/pnas.1115485109
    Zhang M, Li G, Zhou Q, et al. Boosted electrochemical immunosensing of genetically modified crop markers using nanobody and mesoporous carbon[J]. ACS Sens, 2018, 3(3): 684–691. doi: 10.1021/acssensors.8b00011
    Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[J]. Science, 2020, 368(6493): 860–868. doi: 10.1126/science.abb5793
    Li D, Li Q. SARS-CoV-2: vaccines in the pandemic era[J]. Mil Med Res, 2021, 8(1): 1. doi: 10.1186/s40779-020-00296-y
    Guo K, Wustoni S, Koklu A, et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors[J]. Nat Biomed Eng, 2021, 5(7): 666–677. doi: 10.1038/s41551-021-00734-9
    Li F, Zhou Y, Yin H, et al. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs[J]. Biosens Bioelectron, 2020, 166: 112476. doi: 10.1016/j.bios.2020.112476
    Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors[J]. Biosens Bioelectron, 2017, 92: 294–304. doi: 10.1016/j.bios.2016.11.009
    Svitkova V, Palchetti I. Functional polymers in photoelectrochemical biosensing[J]. Bioelectrochemistry, 2020, 136: 107590. doi: 10.1016/j.bioelechem.2020.107590
    Ge L, Liu Q, Hao N, et al. Recent developments of photoelectrochemical biosensors for food analysis[J]. J Mater Chem B, 2019, 7(46): 7283–7300. doi: 10.1039/C9TB01644A
    Mi L, Wang P, Yan J, et al. A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C[J]. Anal Chim Acta, 2016, 902: 107–114. doi: 10.1016/j.aca.2015.11.007
    Ma X, Wang C, Wu F, et al. TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing[J]. Top Curr Chem, 2020, 378(2): 28. doi: 10.1007/s41061-020-0291-y
    Li H, Mu Y, Yan J, et al. Label-free photoelectrochemical immunosensor for neutrophil gelatinase-associated lipocalin based on the use of nanobodies[J]. Anal Chem, 2015, 87(3): 2007–2015. doi: 10.1021/ac504589d
    Liu A, Shan H, Ma M, et al. An ultrasensitive photoelectrochemical immunosensor by integration of nanobody, TiO2 nanorod arrays and ZnS nanoparticles for the detection of tumor necrosis factor-α[J]. J Electroanal Chem, 2017, 803: 1–10. doi: 10.1016/j.jelechem.2017.09.008
    Liu Y, Sheri M, Cole MD, et al. Transforming ionene polymers into efficient cathode interlayers with pendent fullerenes[J]. Angew Chem Int Ed, 2019, 58(17): 5677–5681. doi: 10.1002/anie.201901536
    Liu X, Kozlowska M, Okkali T, et al. Photoconductivity in metal-organic framework (MOF) thin films[J]. Angew Chem Int Ed, 2019, 58(28): 9590–9595. doi: 10.1002/anie.201904475
    Zhou Q, Li GH, Chen K, et al. Simultaneous unlocking optoelectronic and interfacial properties of C60 for ultrasensitive immunosensing by coupling to metal-organic framework[J]. Anal Chem, 2020, 92(1): 983–990. doi: 10.1021/acs.analchem.9b03915
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (350) PDF downloads(29) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint