• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Kai Wang, Zhongming Li, Wenjie Ma, Yan Sun, Xianling Liu, Lijun Qian, Jian Hong, Dasheng Lu, Jing Zhang, Di Xu. Construction of miRNA-mRNA network reveals crucial miRNAs and genes in acute myocardial infarction[J]. The Journal of Biomedical Research, 2021, 35(6): 425-435. doi: 10.7555/JBR.35.20210088
Citation: Kai Wang, Zhongming Li, Wenjie Ma, Yan Sun, Xianling Liu, Lijun Qian, Jian Hong, Dasheng Lu, Jing Zhang, Di Xu. Construction of miRNA-mRNA network reveals crucial miRNAs and genes in acute myocardial infarction[J]. The Journal of Biomedical Research, 2021, 35(6): 425-435. doi: 10.7555/JBR.35.20210088

Construction of miRNA-mRNA network reveals crucial miRNAs and genes in acute myocardial infarction

doi: 10.7555/JBR.35.20210088
More Information
  • Corresponding author: Di Xu, Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel: +86-25-68305071, E-mail: xudi@jsph.org.cn; Jing Zhang, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel: +86-25-68303131, E-mail: zj_njmu@163.com; 
  • Received: 2021-06-03
  • Revised: 2021-08-02
  • Accepted: 2021-08-06
  • Published: 2021-10-10
  • Issue Date: 2021-11-27
  • Acute myocardial infarction (AMI) is a severe cardiovascular disease. This study aimed to identify crucial microRNAs (miRNAs) and mRNAs in AMI by establishing a miRNA-mRNA network. The microarray datasets GSE31568, GSE148153, and GSE66360 were downloaded from the Gene Expression Omnibus (GEO) database. We identified differentially expressed miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) in AMI samples compared with normal control samples. The consistently changing miRNAs in both GSE31568 and GSE148153 datasets were selected as candidate DE-miRNAs. The interactions between the candidate DE-miRNAs and DE-mRNAs were analyzed, and a miRNA-mRNA network and a protein-protein interaction network were constructed, along with functional enrichment and pathway analyses. A total of 209 DE-miRNAs in the GSE31568 dataset, 857 DE-miRNAs in the GSE148153 dataset, and 351 DE-mRNAs in the GSE66360 dataset were identified. Eighteen candidate DE-miRNAs were selected from both the GSE31568 and GSE148153 datasets. Furthermore, miR-646, miR-127-5p, miR-509-5p, miR-509-3-5p, and miR-767-5p were shown to have a higher degree in the miRNA-mRNA network. THBS-1 as well as FOS was a hub gene in the miRNA-mRNA network and the protein-protein interaction (PPI) network, respectively. CDKN1A was important in both miRNA-mRNA network and PPI network. We established a miRNA-mRNA network in AMI and identified five miRNAs and three genes, which might be used as biomarkers and potential therapeutic targets for patients with AMI.

     

  • loading
  • [1]
    Liu X, Gao J, Xia Q, et al. Increased mortality and aggravation of heart failure in liver X receptor-α knockout mice after myocardial infarction[J]. Heart Vessels, 2016, 31(8): 1370–1379. doi: 10.1007/s00380-015-0781-y
    [2]
    Ziegler M, Wang X, Peter K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target[J]. Cardiovasc Res, 2019, 115(7): 1178–1188. doi: 10.1093/cvr/cvz070
    [3]
    Liu J, Wu P, Wang Y, et al. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis[J]. Am J Transl Res, 2016, 8(11): 4605–4627. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126308/
    [4]
    Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction[J]. Acta Pharmacol Sin, 2018, 39(7): 1110–1119. doi: 10.1038/aps.2017.205
    [5]
    Mirzavi F, Ebrahimi S, Ghazvini K, et al. Diagnostic, Prognostic, and Therapeutic Potencies of Circulating miRNAs in Acute Myocardial Infarction[J]. Crit Rev Eukaryot Gene Expr, 2019, 29(4): 333–342. doi: 10.1615/CritRevEukaryotGeneExpr.2019028211
    [6]
    Tony H, Meng K, Wu B, et al. MicroRNA-208a Dysregulates Apoptosis Genes Expression and Promotes Cardiomyocyte Apoptosis during Ischemia and Its Silencing Improves Cardiac Function after Myocardial Infarction[J]. Mediators Inflamm, 2015, 2015: 479123. doi: 10.1155/2015/479123
    [7]
    Yu Y, Liu H, Yang D, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression[J]. Pharmacol Res, 2019, 146: 104315. doi: 10.1016/j.phrs.2019.104315
    [8]
    Qiao GH, Zhu P, Yue L, et al. MiR-125b Improves acute myocardial infarction in rats by regulating P38/Sirtl/P53 signaling pathway[J]. J Biol Regul Homeost Agents, 2020, 34(4): 1297–1306. doi: 10.23812/20-177-A
    [9]
    Zhu M, Ye M, Wang J, et al. Construction of Potential miRNA-mRNA Regulatory Network in COPD Plasma by Bioinformatics Analysis[J]. Int J Chron Obstruct Pulmon Dis, 2020, 15: 2135–2145. doi: 10.2147/COPD.S255262
    [10]
    Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498–2504. doi: 10.1101/gr.1239303
    [11]
    Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8Suppl4(Suppl4): S11. doi: 10.1186/1752-0509-8-S4-S11
    [12]
    Zhang C, Berndt-Paetz M, Neuhaus J. A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer[J]. Cancers (Basel), 2021, 13(12): 3089. doi: 10.3390/cancers13123089
    [13]
    Pathan M, Keerthikumar S, Ang CS, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool[J]. Proteomics, 2015, 15(15): 2597–2601. doi: 10.1002/pmic.201400515
    [14]
    Wu L, Xu Y, Yang Z, et al. Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression[J]. J Biomed Res, 2018, 32(5): 371–379. doi: 10.7555/JBR.32.20170111
    [15]
    Kowara M, Borodzicz-Jazdzyk S, Rybak K, et al. Therapies Targeted at Non-Coding RNAs in Prevention and Limitation of Myocardial Infarction and Subsequent Cardiac Remodeling-Current Experience and Perspectives[J]. Int J Mol Sci, 2021, 22(11): 5718. doi: 10.3390/ijms22115718
    [16]
    Parikh M, Pierce GN. A Brief Review on the Biology and Effects of Cellular and Circulating microRNAs on Cardiac Remodeling after Infarction[J]. Int J Mol Sci, 2021, 22(9): 4995. doi: 10.3390/ijms22094995
    [17]
    Diakos C, Zhong S, Xiao Y, et al. TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a[J]. Blood, 2010, 116(23): 4885–4893. doi: 10.1182/blood-2009-02-206706
    [18]
    Guo Z, Maki M, Ding R, et al. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues[J]. Sci Rep, 2014, 4: 5150. doi: 10.1038/srep05150
    [19]
    Billah M, Ridiandries A, Rayner BS, et al. Egr-1 functions as a master switch regulator of remote ischemic preconditioning-induced cardioprotection[J]. Basic Res Cardiol, 2019, 115(1): 3. doi: 10.1007/s00395-019-0763-9
    [20]
    Kavurma MM, Santiago FS, Bonfoco E, et al. Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement[J]. J Biol Chem, 2001, 276(7): 4964–4971. doi: 10.1074/jbc.M009251200
    [21]
    Verrecchia F, Rossert J, Mauviel A. Blocking sp1 transcription factor broadly inhibits extracellular matrix gene expression in vitro and in vivo: implications for the treatment of tissue fibrosis[J]. J Invest Dermatol, 2001, 116(5): 755–763. doi: 10.1046/j.1523-1747.2001.01326.x
    [22]
    Xu Q, Ji Y, Schmedtje JF, Jr. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure[J]. J Biol Chem, 2000, 275(32): 24583–24589. doi: 10.1074/jbc.M003894200
    [23]
    Li R, Geng H, Xiao J, et al. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1[J]. Sci Rep, 2016, 6: 29082. doi: 10.1038/srep29082
    [24]
    Li M, Wu J, Hu G, et al. Pathological matrix stiffness promotes cardiac fibroblast differentiation through the POU2F1 signaling pathway[J]. Sci China Life Sci, 2020, 64(2): 242–254. doi: 10.1007/s11427-019-1747-y
    [25]
    Zhao C, Liu J, Ge W, et al. Identification of Regulatory circRNAs Involved in the Pathogenesis of Acute Myocardial Infarction[J]. Front Genet, 2021, 11: 626492. doi: 10.3389/fgene.2020.626492
    [26]
    Pan Y, Chen Y, Ma D, et al. miR-646 is a key negative regulator of EGFR pathway in lung cancer[J]. Exp Lung Res, 2016, 42(6): 286–295. doi: 10.1080/01902148.2016.1207726
    [27]
    Liu L, Jin X, Hu C, et al. Amphiregulin enhances cardiac fibrosis and aggravates cardiac dysfunction in mice with experimental myocardial infarction partly through activating EGFR-dependent pathway[J]. Basic Res Cardiol, 2018, 113(2): 12. doi: 10.1007/s00395-018-0669-y
    [28]
    Zhang Y, Tian C, Liu X, et al. Identification of Genetic Biomarkers for Diagnosis of Myocardial Infarction Compared with Angina Patients[J]. Cardiovasc Ther, 2020, 2020: 8535314. doi: 10.1155/2020/8535314
    [29]
    Liu Z, Pan H, Cao Y, et al. Downregulated microRNA-330 suppresses left ventricular remodeling via the TGF-β1/Smad3 signaling pathway by targeting SRY in mice with myocardial ischemia-reperfusion injury[J]. J Cell Physiol, 2019, 234(7): 11440–11450. doi: 10.1002/jcp.27800
    [30]
    Xu H, Li F. miR-127 aggravates myocardial failure by promoting the TGF-β1/Smad3 signaling[J]. Mol Med Rep, 2018, 18(6): 4839–4846. doi: 10.3892/mmr.2018.9514
    [31]
    Karolina DS, Tavintharan S, Armugam A, et al. Circulating miRNA profiles in patients with metabolic syndrome[J]. J Clin Endocrinol Metab, 2012, 97(12): E2271–E2276. doi: 10.1210/jc.2012-1996
    [32]
    Antonowski T, Osowski A, Lahuta L, et al. Health-Promoting Properties of Selected Cyclitols for Metabolic Syndrome and Diabetes[J]. Nutrients, 2019, 11(10): 2314. doi: 10.3390/nu11102314
    [33]
    Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation[J]. Nature, 2010, 464(7288): 606–609. doi: 10.1038/nature08899
    [34]
    Plaisier CL, Pan M, Baliga NS. A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers[J]. Genome Res, 2012, 22(11): 2302–2314. doi: 10.1101/gr.133991.111
    [35]
    Li M, Wu L. Functional analysis of keratinocyte and fibroblast gene expression in skin and keloid scar tissue based on deviation analysis of dynamic capabilities[J]. Exp Ther Med, 2016, 12(6): 3633–3641. doi: 10.3892/etm.2016.3817
    [36]
    Zlochiver S, Muñoz V, Vikstrom KL, et al. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers[J]. Biophys J, 2008, 95(9): 4469–4480. doi: 10.1529/biophysj.108.136473
    [37]
    Qu X, Yan X, Kong C, et al. c-Myb promotes growth and metastasis of colorectal cancer through c-fos-induced epithelial-mesenchymal transition[J]. Cancer Sci, 2019, 110(10): 3183–3196. doi: 10.1111/cas.14141
    [38]
    Isoyama S, Nitta-Komatsubara Y. Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart[J]. Heart Fail Rev, 2002, 7(1): 63–69. doi: 10.1023/A:1013701923065
    [39]
    Sugano M, Hata T, Tsuchida K, et al. Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats[J]. Mol Cell Biochem, 2004, 266(1-2): 127–132. doi: 10.1023/B:MCBI.0000049149.03964.c9
    [40]
    Tanno M, Gorog DA, Bellahcene M, et al. Tumor necrosis factor-induced protection of the murine heart is independent of p38-MAPK activation[J]. J Mol Cell Cardiol, 2003, 35(12): 1523–1527. doi: 10.1016/j.yjmcc.2003.09.019
    [41]
    Hsu CP, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion[J]. Circulation, 2010, 122(21): 2170–2182. doi: 10.1161/CIRCULATIONAHA.110.958033
    [42]
    Lu D, Liu J, Jiao J, et al. Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain[J]. J Biol Chem, 2013, 288(12): 8491–8504. doi: 10.1074/jbc.M112.442061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (295) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return