• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Barja François. Bacterial nanocellulose production and biomedical applications[J]. The Journal of Biomedical Research, 2021, 35(4): 310-317. doi: 10.7555/JBR.35.20210036
Citation: Barja François. Bacterial nanocellulose production and biomedical applications[J]. The Journal of Biomedical Research, 2021, 35(4): 310-317. doi: 10.7555/JBR.35.20210036

Bacterial nanocellulose production and biomedical applications

doi: 10.7555/JBR.35.20210036
More Information
  • Corresponding author: François Barja, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Genève-4, Switzerland. Tel/Fax: +41-22-379-3754/+41-22-379-3753, E-mail: Francois.Barja@unige.ch
  • Received: 2021-03-02
  • Accepted: 2021-03-27
  • Published: 2021-05-14
  • Issue Date: 2021-07-28
  • Bacterial nanocellulose (BNC) is a homopolymer of β-1,4 linked glycose, which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small- and large-scale production. Depending on the growth media and types of fermentation methods, ultra-pure cellulose can be obtained with different physio-chemical characteristics. Upon biosynthesis, bacterial cellulose is assembled in the medium into a nanostructured network of glucan polymers that are semitransparent, mechanically highly resistant, but soft and elastic, and with a high capacity to store water and exchange gasses. BNC, generally recognized as safe as well as one of the most biocompatible materials, has been found numerous medical applications in wound dressing, drug delivery systems, and implants of heart valves, blood vessels, tympanic membranes, bones, teeth, cartilages, cornea, and urinary tracts.

     

  • loading
  • [1]
    Brown Jr RM. Cellulose structure and biosynthesis: what is in store for the 21st century?[J]. J Polym Sci Part A Polym Chem, 2004, 42(3): 487–495. doi: 10.1002/pola.10877
    [2]
    Allen H, Wei DH, Gu Y, et al. A historical perspective on the regulation of cellulose biosynthesis[J]. Carbohydr Polym, 2021, 252: 117022. doi: 10.1016/j.carbpol.2020.117022
    [3]
    Tarchoun AF, Trache D, Klapötke TM. Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization[J]. Int J Biol Macromol, 2019, 138: 837–845. doi: 10.1016/j.ijbiomac.2019.07.176
    [4]
    Lin SP, Loira Calvar I, Catchmark JM, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose, 2013, 20(5): 2191–2219. doi: 10.1007/s10570-013-9994-3
    [5]
    Sharma C, Bhardwaj NK. Bacterial nanocellulose: present status, biomedical applications and future perspectives[J]. Mater Sci Eng C, 2019, 104: 109963. doi: 10.1016/j.msec.2019.109963
    [6]
    Keshk SM. Bacterial cellulose production and its industrial applications[J]. J Bioprocess Biotech, 2014, 4: 150. doi: 10.4172/2155-9821.1000150
    [7]
    Lee YK, Buldum G, Mantalaris A, et al. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites[J]. Macromol Biosci, 2014, 14(1): 10–32. doi: 10.1002/mabi.201300298
    [8]
    Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials[J]. Nat Rev Microbiol, 2020, 18(4): 195–210. doi: 10.1038/s41579-019-0313-3
    [9]
    Acheson JF, Derewenda ZS, Zimmer J. Architecture of the cellulose synthase outer membrane channel and its association with the periplasmic TPR domain[J]. Structure, 2019, 27(12): 1855–1861. doi: 10.1016/j.str.2019.09.008
    [10]
    Acheson JF, Derewenda Z, Zimmer J. RCSB PDB. 6TZK: bacterial cellulose synthase outermembrane channel BcsC with terminal TPR repeat[EB/OL]. [2019-10-23]. https://www.rcsb.org/structure/6TZK.
    [11]
    Aleshina LA, Prusskii AI, Mikhailidi AM, et al. X-ray diffraction study of cellulose powders and their hydrogels. Computer modeling of the atomic structure[J]. Fibre Chem, 2018, 50(3): 166–175. doi: 10.1007/s10692-018-9954-7
    [12]
    Zimmer J. RCSB PDB. 4HG6: structure of a cellulose synthase-cellulose translocation intermediate[EB/OL]. [2012-12-19]. https://www.rcsb.org/structure/4hg6.
    [13]
    Morgan JLW, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation[J]. Nature, 2013, 493(7431): 181–186. doi: 10.1038/nature11744
    [14]
    Tonouchi N. Cellulose and other capsular polysaccharides of acetic acid bacteria[M]//Matsushita K, Toyama H, Tonouchi N, et al. Acetic Acid Bacteria: Ecology and Physiology. Tokyo: Springer, 2016: 299–320.
    [15]
    Brown AJ. XLIII. - on an acetic ferment which forms cellulose[J]. J Chem Soc Trans, 1886, 49(49): 432–439. https://pubs.rsc.org/en/content/articlelanding/1886/ct/ct8864900432#!divAbstract
    [16]
    Czaja WK, Young DJ, Kawecki M, et al. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules, 2007, 8(1): 1–12. doi: 10.1021/bm060620d
    [17]
    Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria[J]. Microbiol Rev, 1991, 55(1): 35–58. doi: 10.1128/MR.55.1.35-58.1991
    [18]
    Ullah H, Wahid F, Santos HA, et al. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites[J]. Carbohydr Polym, 2016, 150: 330–352. doi: 10.1016/j.carbpol.2016.05.029
    [19]
    Picheth GF, Pirich CL, Sierakowski MR, et al. Bacterial cellulose in biomedical applications: a review[J]. Int J Biol Macromol, 2017, 104: 97–106. doi: 10.1016/j.ijbiomac.2017.05.171
    [20]
    Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature's arts[J]. J Mater Sci, 2000, 35(2): 261–270. doi: 10.1023/A:1004775229149
    [21]
    Wang J, Tavakoli J, Tang YH. Bacterial cellulose production, properties and applications with different culture methods – A review[J]. Carbohydr Polym, 2019, 219: 63–76. doi: 10.1016/j.carbpol.2019.05.008
    [22]
    Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325(6101): 279–281. doi: 10.1038/325279a0
    [23]
    Saxena IM, Kudlicka K, Okuda K, et al. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization[J]. J Bacteriol, 1994, 176(18): 5735–5752. doi: 10.1128/JB.176.18.5735-5752.1994
    [24]
    Wong HC, Fear AL, Calhoon RD, et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum[J]. Proc Natl Acad Sci U S A, 1990, 87(20): 8130–8134. doi: 10.1073/pnas.87.20.8130
    [25]
    Standal R, Iversen TG, Coucheron DH, et al. A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon[J]. J Bacteriol, 1994, 176(3): 665–672. doi: 10.1128/JB.176.3.665-672.1994
    [26]
    Saxena IM, Brown M. Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum[J]. J Bacteriol, 1995, 177(18): 5276–5283. doi: 10.1128/JB.177.18.5276-5283.1995
    [27]
    Deng Y, Nagachar N, Xiao CW, et al. Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis[J]. J Bacteriol, 2013, 195(22): 5072–5083. doi: 10.1128/JB.00767-13
    [28]
    Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose, 2004, 11(3-4): 403–411. doi: 10.1023/B:CELL.0000046412.11983.61
    [29]
    Jahan F, Kumar V, Rawat G, et al. Production of microbial cellulose by a bacterium isolated from fruit[J]. Appl Biochem Biotechnol, 2012, 167(5): 1157–1171. doi: 10.1007/s12010-012-9595-x
    [30]
    Dubey S, Singh J, Singh RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation[J]. Bioresour Technol, 2018, 247: 73–80. doi: 10.1016/j.biortech.2017.09.089
    [31]
    Chao YP, Sugano Y, Kouda T, et al. Production of bacterial cellulose by Acetobacter xylinumwith an air-lift reactor[J]. Biotechnol Tech, 1997, 11(11): 829–832. doi: 10.1023/A:1018433526709
    [32]
    Wu SC, Li MH. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus[J]. J Biosci Bioeng, 2015, 120(4): 444–449. doi: 10.1016/j.jbiosc.2015.02.018
    [33]
    Lucchesi C, Ferreira BMP, Duek EAR, et al. Increased response of Vero cells to PHBV matrices treated by plasma[J]. J Mater Sci Mater Med, 2008, 19(2): 635–643. doi: 10.1007/s10856-007-0169-3
    [34]
    Boateng JS, Matthews KH, Stevens HNE, et al. Wound healing dressings and drug delivery systems: a review[J]. J Pharm Sci, 2008, 97(8): 2892–2923. doi: 10.1002/jps.21210
    [35]
    Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose—The natural power to heal wounds[J]. Biomaterials, 2006, 27(2): 145–151. doi: 10.1016/j.biomaterials.2005.07.035
    [36]
    Fontana JD, De Souza AM, Fontana CK, et al. Acetobacter cellulose pellicle as a temporary skin substitute[J]. Appl Biochem Biotechnol, 1990, 24-25: 253–264. doi: 10.1007/BF02920250
    [37]
    Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydr Polym, 2008, 72(1): 43–51. doi: 10.1016/j.carbpol.2007.07.025
    [38]
    Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects[J]. J Pharm Pharmacol, 2014, 66(8): 1047–1061. doi: 10.1111/jphp.12234
    [39]
    Gonçalves S, Padrão J, Rodrigues IP, et al. Bacterial cellulose as a support for the growth of retinal pigment epithelium[J]. Biomacromolecules, 2015, 16(4): 1341–1351. doi: 10.1021/acs.biomac.5b00129
    [40]
    Wang W, Li HY, Zhang DW, et al. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite[J]. Electroanalysis, 2010, 22(21): 2543–2550. doi: 10.1002/elan.201000235
    [41]
    Patchan MW, Chae JJ, Lee JD, et al. Evaluation of the biocompatibility of regenerated cellulose hydrogels with high strength and transparency for ocular applications[J]. J Biomater Appl, 2016, 30(7): 1049–1059. doi: 10.1177/0885328215616273
    [42]
    Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose—Artificial blood vessels for microsurgery[J]. Prog Polym Sci, 2001, 26(9): 1561–1603. doi: 10.1016/S0079-6700(01)00021-1
    [43]
    Schumann DA, Wippermann J, Klemm DO, et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes[J]. Cellulose, 2009, 16(5): 877–885. doi: 10.1007/s10570-008-9264-y
    [44]
    Fink H, Faxälv L, Molnár GF, et al. Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials[J]. Acta Biomater, 2010, 6(3): 1125–1130. doi: 10.1016/j.actbio.2009.09.019
    [45]
    Silveira FCA, Cristina F, Pinto M, et al. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial[J]. Braz J Otorhinolaryngol, 2016, 82(2): 203–208. doi: 10.1016/j.bjorl.2015.03.015
    [46]
    Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage[J]. Biomaterials, 2005, 26(4): 419–431. doi: 10.1016/j.biomaterials.2004.02.049
    [47]
    Torgbo S, Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering[J]. Appl Mater Today, 2018, 11: 34–49. doi: 10.1016/j.apmt.2018.01.004
    [48]
    Zaborowska M, Bodin A, Bäckdahl H, et al. Microporous bacterial cellulose as a potential scaffold for bone regeneration[J]. Acta Biomater, 2010, 6(7): 2540–2547. doi: 10.1016/j.actbio.2010.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (84) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return