• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 3
May  2021
Turn off MathJax
Article Contents
Sang R. Lee, Hyun Yang, Seong Lae Jo, Young Ho Lee, Hye Won Lee, Bae-keun Park, Eui-Ju Hong. Suppressed estrogen supply via extra-ovarian progesterone receptor membrane component 1 in menopause[J]. The Journal of Biomedical Research, 2021, 35(3): 228-237. doi: 10.7555/JBR.35.20200172
Citation: Sang R. Lee, Hyun Yang, Seong Lae Jo, Young Ho Lee, Hye Won Lee, Bae-keun Park, Eui-Ju Hong. Suppressed estrogen supply via extra-ovarian progesterone receptor membrane component 1 in menopause[J]. The Journal of Biomedical Research, 2021, 35(3): 228-237. doi: 10.7555/JBR.35.20200172

Suppressed estrogen supply via extra-ovarian progesterone receptor membrane component 1 in menopause

doi: 10.7555/JBR.35.20200172
More Information
  • Corresponding author: Eui-Ju Hong, College of Veterinary Medicine, 99 Daehak-ro, Suite 401Veterinary medicine Bldg., Yuseong, Daejeon 34134, Republic of Korea. Tel/Fax: +82-42-821-6781/+82-42-821-8903, Email: ejhong@cnu.ac.kr
  • Received: 2020-10-27
  • Revised: 2020-12-10
  • Accepted: 2020-12-17
  • Published: 2021-01-29
  • Issue Date: 2021-05-28
  • In post-menopausal women, intra-mammary estrogen, which is converted from extra-ovarian estrone (E1), promotes the growth of breast cancer. Since the aromatase inhibitor letrozole does not suppress 17β-estradiol (E2) production from E1, high intra-mammary E1 concentrations impair letrozole's therapeutic efficacy. Progesterone receptor membrane component 1 (Pgrmc1) is a non-classical progesterone receptor associated with breast cancer progression. In the present study, we introduced a Pgrmc1 heterozygous knockout (hetero KO) murine model exhibiting low Pgrmc1 expression, and observed estrogen levels and steroidogenic gene expression. Naïve Pgrmc1 hetero KO mice exhibited low estrogen (E2 and E1) levels and low progesterone receptor (PR) expression, compared to wild-type mice. In contrast, Pgrmc1 hetero KO mice that have been ovariectomized (OVX), including letrozole-treated OVX mice (OVX-letrozole), exhibited high estrogen levels and PR expression. Increased extra-ovarian estrogen production in Pgrmc1 hetero KO mice was observed with the induction of steroid sulfatase (STS). In MCF-7 cell, letrozole suppressed PR expression, but PGRMC1 knockdown increased PR and STS expression. Our presented results highlight the important role of Pgrmc1 in modulating estrogen production when ovary-derived estrogen is limited, thereby suggesting a potential therapeutic approach for letrozole resistance.


  • loading
  • [1]
    Hillier SG, Whitelaw PF, Smyth CD. Follicular oestrogen synthesis: the 'two-cell, two-gonadotrophin' model revisited[J]. Mol Cell Endocrinol, 1994, 100(1–2): 51–54. doi: 10.1016/0303-7207(94)90278-x
    Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain[J]. Trends Mol Med, 2013, 19(3): 197–209. doi: 10.1016/j.molmed.2012.12.007
    Khosla S, Atkinson EJ, Melton Ⅲ LJ, et al. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study[J]. J Clin Endocrinol Metab, 1997, 82(5): 1522–1527. doi: 10.1210/jcem.82.5.3946
    Vermeulen A, Verdonck L. Factors affecting sex hormone levels in postmenopausal women[J]. J Steroid Biochem, 1979, 11(1): 899–904. doi: 10.1016/0022-4731(79)90027-X
    Forney JP, Milewich L, Chen GT, et al. Aromatization of androstenedione to estrone by human adipose tissue in vitro. Correlation with adipose tissue mass, age, and endometrial neoplasia[J]. J Clin Endocrinol Metab, 1981, 53(1): 192–199. doi: 10.1210/jcem-53-1-192
    Hetemäki N, Savolainen-Peltonen H, Tikkanen MJ, et al. Estrogen metabolism in abdominal subcutaneous and visceral adipose tissue in postmenopausal women[J]. J Clin Endocrinol Metab, 2017, 102(12): 4588–4595. doi: 10.1210/jc.2017-01474
    Marchais-Oberwinkler S, Henn C, Möller G, et al. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development[J]. J Steroid Biochem Mol Biol, 2011, 125(1–2): 66–82. doi: 10.1016/j.jsbmb.2010.12.013
    Reed MJ, Purohit A, Woo LWL, et al. Steroid sulfatase: molecular biology, regulation, and inhibition[J]. Endocr Rev, 2005, 26(2): 171–202. doi: 10.1210/er.2004-0003
    Lamb HM, Adkins JC. Letrozole: A review of its use in postmenopausal women with advanced breast cancer[J]. Drugs, 1998, 56(6): 1125–1140. doi: 10.2165/00003495-199856060-00020
    Kabe Y, Nakane T, Koike I, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance[J]. Nat Commun, 2016, 7: 11030. doi: 10.1038/ncomms11030
    Hampton KK, Anderson K, Frazier H, et al. Insulin receptor plasma membrane levels increased by the progesterone receptor membrane component 1[J]. Mol Pharmacol, 2018, 94(1): 665–673. doi: 10.1124/mol.117.110510
    Lee SR, Choi WY, Heo JH, et al. Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin[J]. Sci Rep, 2020, 10(1): 16316. doi: 10.1038/s41598-020-73330-7
    Hughes AL, Powell DW, Bard M, et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes[J]. Cell Metab, 2007, 5(2): 143–149. doi: 10.1016/j.cmet.2006.12.009
    Rohe HJ, Ahmed IS, Twist KE, et al. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding[J]. Pharmacol Ther, 2009, 121(1): 14–19. doi: 10.1016/j.pharmthera.2008.09.006
    Asperger H, Stamm N, Gierke B, et al. Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression[J]. Breast Cancer Res, 2020, 22(1): 75. doi: 10.1186/s13058-020-01312-8
    Li X, Ruan X, Gu M, et al. PGRMC1 can trigger estrogen-dependent proliferation of breast cancer cells: estradiol vs. equilin vs. ethinylestradiol[J]. Climacteric, 2019, 22(5): 483–488. doi: 10.1080/13697137.2019.1582624
    Lee SR, Kwon SW, Kaya P, et al. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis[J]. Sci Rep, 2018, 8(1): 15711. doi: 10.1038/s41598-018-34148-6
    Yang H, Lee SY, Lee SR, et al. Therapeutic effect of Ecklonia cava extract in letrozole-induced polycystic ovary syndrome rats[J]. Front Pharmacol, 2018, 9: 1325. doi: 10.3389/fphar.2018.01325
    Zhang Y, Ruan XY, Willibald M, et al. May progesterone receptor membrane component 1 (PGRMC1) predict the risk of breast cancer?[J]. Gynecol Endocrinol, 2016, 32(1): 58–60. doi: 10.3109/09513590.2015.1078303
    Neubauer H, Yang Y, Seeger H, et al. The presence of a membrane-bound progesterone receptor sensitizes the estradiol-induced effect on the proliferation of human breast cancer cells[J]. Menopause, 2011, 18(8): 845–850. doi: 10.1097/gme.0b013e31820e5ac5
    Miller WR, Larionov A. Changes in expression of oestrogen regulated and proliferation genes with neoadjuvant treatment highlight heterogeneity of clinical resistance to the aromatase inhibitor, letrozole[J]. Breast Cancer Res, 2010, 12(4): R52. doi: 10.1186/bcr2611
    Miller WR. Aromatase inhibitors: prediction of response and nature of resistance[J]. Expert Opin Pharmacother, 2010, 11(11): 1873–1887. doi: 10.1517/14656566.2010.487863
    Bhatnagar AS. The discovery and mechanism of action of letrozole[J]. Breast Cancer Res Treat, 2007, 105(Suppl 1): 7–17. doi: 10.1007/s10549-007-9696-3
    Elledge RM, Osborne CK. Oestrogen receptors and breast cancer[J]. BMJ, 1997, 314(7098): 1843–1844. doi: 10.1136/bmj.314.7098.1843
    Chatterton Jr RT, Geiger AS, Gann PH, et al. Formation of estrone and estradiol from estrone sulfate by normal breast parenchymal tissue[J]. J Steroid Biochem Mol Biol, 2003, 86(2): 159–166. doi: 10.1016/S0960-0760(03)00266-8
    Pasqualini JR, Gelly C, Nguyen BL, et al. Importance of estrogen sulfates in breast cancer[J]. J Steroid Biochem, 1989, 34(1–6): 155–163. doi: 10.1016/0022-4731(89)90077-0
    Hanamura T, Niwa T, Gohno T, et al. Possible role of the aromatase-independent steroid metabolism pathways in hormone responsive primary breast cancers[J]. Breast Cancer Res Treat, 2014, 143(1): 69–80. doi: 10.1007/s10549-013-2788-3
    Nakata T, Takashima S, Shiotsu Y, et al. Role of steroid sulfatase in local formation of estrogen in post-menopausal breast cancer patients[J]. J Steroid Biochem Mol Biol, 2003, 86(3–5): 455–460. doi: 10.1016/S0960-0760(03)00357-1
    Geisler J, Sasano H, Chen S, et al. Steroid sulfatase inhibitors: promising new tools for breast cancer therapy?[J]. J Steroid Biochem Mol Biol, 2011, 125(1–2): 39–45. doi: 10.1016/j.jsbmb.2011.02.002
    Chanplakorn N, Chanplakorn P, Suzuki T, et al. Increased estrogen sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β-HSD1) following neoadjuvant aromatase inhibitor therapy in breast cancer patients[J]. Breast Cancer Res Treat, 2010, 120(3): 639–648. doi: 10.1007/s10549-010-0785-3
    Ruan XY, Cai GJ, Wei Y, et al. Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with breast tumor characteristics and comparison with known tumor markers[J]. Menopause, 2020, 27(2): 183–193. doi: 10.1097/GME.0000000000001436
    Kim G, Lee JG, Cheong SA, et al. Progesterone receptor membrane component 1 is required for mammary gland development[J]. Biol Reprod, 2020, 103(6): 1249–1259. doi: 10.1093/biolre/ioaa164
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (156) PDF downloads(23) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint