• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Mihaela Gheorghiu. A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.34.20200128
Citation: Mihaela Gheorghiu. A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.34.20200128

A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis

doi: 10.7555/JBR.34.20200128
More Information
  • Corresponding author: Mihaela Gheorghiu, Biosensors Department, International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania. Tel: +40-21-3104354, E-mail: mgheorghiu@biodyn.ro
  • Received: 2020-07-31
  • Revised: 2020-10-13
  • Accepted: 2020-11-06
  • Published: 2020-12-25
  • Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for developing groundbreaking sensing and theragnostic platforms. The recent literature concerning whole-cell biosensors is reviewed with an emphasis on mammalian cells, and the challenges and breakthroughs brought along in biomedical analyses through novel biosensing concepts and the synthetic biology toolbox. These recent innovations allow development of cell-based biosensing platforms having tailored performances and capable to reach the levels of sensitivity, dynamic range, and stability suitable for high analytic/medical relevance. They also pave the way for the construction of flexible biosensing platforms with utility across biological research and clinical applications. The work is intended to stimulate interest in generation of cell-based biosensors and improve their acceptance and exploitation.


  • loading
  • [1]
    Gui QY, Lawson T, Shan SY, et al. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics[J]. Sensors, 2017, 17(7): 1623. doi: 10.3390/s17071623
    Turner APF. Biosensors: sense and sensibility[J]. Chem Soc Rev, 2013, 42(8): 3184–3196. doi: 10.1039/c3cs35528d
    Goode JA, Rushworth JVH, Millner PA. Biosensor regeneration: a review of common techniques and outcomes[J]. Langmuir, 2015, 31(23): 6267–6276. doi: 10.1021/la503533g
    Liu QJ, Wu CS, Cai H, et al. Cell-based biosensors and their application in biomedicine[J]. Chem Rev, 2014, 114(12): 6423–6461. doi: 10.1021/cr2003129
    Brown JP, Lynch BS, Curry-Chisolm IM, et al. Assaying spontaneous network activity and cellular viability using multi-well microelectrode arrays[J]. Methods Mol Biol, 2017, 1601: 153–170. doi: 10.1007/978-1-4939-6960-9_13
    Xie MQ, Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications[J]. Nat Rev Mol Cell Biol, 2018, 19(8): 507–525. doi: 10.1038/s41580-018-0024-z
    Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease[J]. Nat Biomed Eng, 2018, 2(6): 399–415. doi: 10.1038/s41551-018-0215-0
    Gupta N, Renugopalakrishnan V, Liepmann D, et al. Cell-based biosensors: recent trends, challenges and future perspectives[J]. Biosens Bioelectron, 2019, 141: 111435. doi: 10.1016/j.bios.2019.111435
    Hicks M, Bachmann TT, Wang BJ. Synthetic biology enables programmable cell-based biosensors[J]. ChemPhysChem, 2020, 21(2): 131. doi: 10.1002/cphc.201901191
    Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces[J]. Exp Cell Res, 2000, 259(1): 158–166. doi: 10.1006/excr.2000.4919
    Hafner F. Cytosensor® microphysiometer: technology and recent applications[J]. Biosens Bioelectron, 2000, 15(3-4): 149–158. doi: 10.1016/S0956-5663(00)00069-5
    Asphahani F, Thein M, Veiseh O, et al. Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors[J]. Biosens Bioelectron, 2008, 23(8): 1307–1313. doi: 10.1016/j.bios.2007.11.021
    Ghenim L, Kaji H, Hoshino Y, et al. Monitoring impedance changes associated with motility and mitosis of a single cell[J]. Lab Chip, 2010, 10(19): 2546–2550. doi: 10.1039/c004115g
    Giaever I, Keese CR. Micromotion of mammalian cells measured electrically[J]. Proc Natl Acad Sci USA, 1991, 88(17): 7896–7900. doi: 10.1073/pnas.88.17.7896
    Han A, Yang L, Frazier AB. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy[J]. Clin Cancer Res, 2007, 13(1): 139–143. doi: 10.1158/1078-0432.CCR-06-1346
    Hong J, Jiang DM, Gu CL, et al. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study[J]. Analyst, 2011, 136(2): 237–245. doi: 10.1039/C0AN00560F
    Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873(1): 65–71. doi: 10.1111/j.1749-6632.1999.tb09450.x
    Schwarz M, Jendrusch M, Constantinou I. Spatially resolved electrical impedance methods for cell and particle characterization[J]. Electrophoresis, 2020, 41(1–2): 65–80. doi: 10.1002/elps.201900286
    Wei XW, Gu CL, Li HB, et al. Efficacy and cardiotoxicity integrated assessment of anticancer drugs by a dual functional cell-based biosensor[J]. Sens Actuators B: Chem, 2019, 283: 881–889. doi: 10.1016/j.snb.2018.12.085
    Pan YX, Jiang DM, Gu CL, et al. 3D microgroove electrical impedance sensing to examine 3D cell cultures for antineoplastic drug assessment[J]. Microsyst Nanoeng, 2020, 6(1): 23. doi: 10.1038/s41378-020-0130-x
    Stanica L, Rosu-Hamzescu M, Gheorghiu M, et al. Electric cell-substrate impedance sensing of cellular effects under hypoxic conditions and carbonic anhydrase inhibition[J]. J Sens, 2017, 2017: 9290478. doi: 10.1155/2017/9290478
    Stanica L, Gheorghiu M, Stan M, et al. Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays[J]. J Enzyme Inhib Med Chem, 2017, 32(1): 1079–1090. doi: 10.1080/14756366.2017.1355306
    Munteanu RE, Stǎnicǎ L, Gheorghiu M, et al. Measurement of the extracellular pH of adherently growing mammalian cells with high spatial resolution using a voltammetric pH microsensor[J]. Anal Chem, 2018, 90(11): 6899–6905. doi: 10.1021/acs.analchem.8b01124
    Bondarenko A, Cortés-Salazar F, Gheorghiu M, et al. Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment[J]. Anal Chem, 2015, 87(8): 4479–4486. doi: 10.1021/acs.analchem.5b00455
    Gáspár S, David S, Polonschii C, et al. Simultaneous impedimetric and amperometric interrogation of renal cells exposed to a calculus-forming salt[J]. Anal Chim Acta, 2012, 713: 115–120. doi: 10.1016/j.aca.2011.11.031
    Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. Bioelectromagnetics, 1996, 17(6): 475–482. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
    Asami K, Gheorghiu E, Yonezawa T. Real-time monitoring of yeast cell division by dielectric spectroscopy[J]. Biophys J, 1999, 76(6): 3345–3348. doi: 10.1016/S0006-3495(99)77487-4
    Gheorghiu E, Balut C, Gheorghiu M. Dielectric behaviour of gap junction connected cells: a microscopic approach[J]. Phys Med Biol, 2002, 47(2): 341–348. doi: 10.1088/0031-9155/47/2/312
    Gheorghiu M, David S, Polonschii C, et al. Label free sensing platform for amyloid fibrils effect on living cells[J]. Biosens Bioelectron, 2014, 52: 89–97. doi: 10.1016/j.bios.2013.08.028
    Gheorghiu M, Enciu AM, Popescu BO, et al. Functional and molecular characterization of the effect of amyloid-β42 on an in vitro epithelial barrier model[J]. J Alzheimers Dis, 2014, 38(4): 787–798. doi: 10.3233/JAD-122374
    Peter B, Ungai-Salanki R, Szabó B, et al. High-resolution adhesion kinetics of EGCG-exposed tumor cells on biomimetic interfaces: comparative monitoring of cell viability using label-free biosensor and classic end-point assays[J]. ACS Omega, 2018, 3(4): 3882–3891. doi: 10.1021/acsomega.7b01902
    Dinca V, Zaharie-Butucel D, Stanica L, et al. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme[J]. Colloids Surf B, 2018, 162: 98–107. doi: 10.1016/j.colsurfb.2017.11.058
    Cheng MS, Lau SH, Chan KP, et al. Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses[J]. Biosens Bioelectron, 2015, 70: 74–80. doi: 10.1016/j.bios.2015.03.018
    Selvam AP, Wangzhou AD, Jacobs M, et al. Development and validation of an impedance biosensor for point-of-care detection of vascular cell adhesion molecule-1 toward lupus diagnostics[J]. Future Sci OA, 2017, 3(3): FSO224. doi: 10.4155/fsoa-2017-0047
    Pan YX, Hu N, Wei XW, et al. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing[J]. Biosens Bioelectron, 2019, 130: 344–351. doi: 10.1016/j.bios.2018.09.046
    Mohammadi S, Nikkhah M, Hosseinkhani S. Investigation of the effects of carbon-based nanomaterials on A53T alpha-synuclein aggregation using a whole-cell recombinant biosensor[J]. Int J Nanomedicine, 2017, 12: 8831–8840. doi: 10.2147/IJN.S144764
    Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges[J]. Electroanalysis, 2007, 19(12): 1239–1257. doi: 10.1002/elan.200603855
    Gheorghiu M, Stănică L, Tegla MGG, et al. Cellular sensing platform with enhanced sensitivity based on optogenetic modulation of cell homeostasis[J]. Biosens Bioelectron, 2020, 154: 112003. doi: 10.1016/j.bios.2019.112003
    Gheorghiu M, Stanica L, Polonschii C, et al. Modulation of cellular reactivity for enhanced cell-based biosensing[J]. Anal Chem, 2020, 92(1): 806–814. doi: 10.1021/acs.analchem.9b03217
    Airan RD, Thompson KR, Fenno LE, et al. Temporally precise in vivo control of intracellular signalling[J]. Nature, 2009, 458(7241): 1025–1029. doi: 10.1038/nature07926
    Mattis J, Tye KM, Ferenczi EA, et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins[J]. Nat Methods, 2012, 9(2): 159–172. doi: 10.1038/nmeth.1808
    Tischer D, Weiner OD. Illuminating cell signalling with optogenetic tools[J]. Nat Rev Mol Cell Biol, 2014, 15(8): 551–558. doi: 10.1038/nrm3837
    Zhang F, Vierock J, Yizhar O, et al. The microbial opsin family of optogenetic tools[J]. Cell, 2011, 147(7): 1446–1457. doi: 10.1016/j.cell.2011.12.004
    Charlton FW, Pearson HM, Hover S, et al. Ion channels as therapeutic targets for viral infections: further discoveries and future perspectives[J]. Viruses, 2020, 12(8): 844. doi: 10.3390/v12080844
    Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions[J]. Nat Rev Microbiol, 2012, 10(8): 563–574. doi: 10.1038/nrmicro2820
    Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation[J]. Stem Cell Rev Rep, 2009, 5(3): 231–246. doi: 10.1007/s12015-009-9080-2
    Mavrikou S, Moschopoulou G, Tsekouras V, et al. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen[J]. Sensors, 2020, 20(11): 3121. doi: 10.3390/s20113121
    Ausländer S, Fussenegger M. Engineering gene circuits for mammalian cell-based applications[J]. Cold Spring Harb Perspect Biol, 2016, 8(7): a023895. doi: 10.1101/cshperspect.a023895
    Derick S, Gironde C, Perio P, et al. LUCS (Light-Up Cell System), a universal high throughput assay for homeostasis evaluation in live cells[J]. Sci Rep, 2017, 7(1): 18069. doi: 10.1038/s41598-017-18211-2
    Ambrosi CM, Boyle PM, Chen K, et al. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability[J]. Sci Rep, 2015, 5(1): 17350. doi: 10.1038/srep17350
    Hofmann U, Michaelis S, Winckler T, et al. A whole-cell biosensor as in vitro alternative to skin irritation tests[J]. Biosens Bioelectron, 2013, 39(1): 156–162. doi: 10.1016/j.bios.2012.07.075
    Apostolou T, Moschopoulou G, Kolotourou E, et al. Assessment of in vitro dopamine-neuroblastoma cell interactions with a bioelectric biosensor: perspective for a novel in itro functional assay for dopamine agonist/antagonist activity[J]. Talanta, 2017, 170: 69–73. doi: 10.1016/j.talanta.2017.03.098
    Kojima R, Aubel D, Fussenegger M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors" in the body[J]. Cell Mol Life Sci, 2020, 77(18): 3567–3581. doi: 10.1007/s00018-020-03486-y
    Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy[J]. Bioconjugate Chem, 2011, 22(10): 1879–1903. doi: 10.1021/bc200151q
    Belkin S. Microbial whole-cell sensing systems of environmental pollutants[J]. Curr Opin Microbiol, 2003, 6(3): 206–212. doi: 10.1016/S1369-5274(03)00059-6
    Banerjee P, Bhunia AK. Mammalian cell-based biosensors for pathogens and toxins[J]. Trends Biotechnol, 2009, 27(3): 179–188. doi: 10.1016/j.tibtech.2008.11.006
    Yang XY, Her J, Bashor CJ. Mammalian signaling circuits from bacterial parts[J]. Nat Chem Biol, 2020, 16(2): 110–111. doi: 10.1038/s41589-019-0436-x
    Schwarz KA, Daringer NM, Dolberg TB, et al. Rewiring human cellular input-output using modular extracellular sensors[J]. Nat Chem Biol, 2017, 13(2): 202–209. doi: 10.1038/nchembio.2253
    Vasilescu A, Purcarea C, Popa E, et al. Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures[J]. Biosens Bioelectron, 2016, 83: 353–360. doi: 10.1016/j.bios.2016.04.080
    Donahue PS, Draut JW, Muldoon JJ, et al. The COMET toolkit for composing customizable genetic programs in mammalian cells[J]. Nat Commun, 2020, 11(1): 779. doi: 10.1038/s41467-019-14147-5
    Bakhshpour M, Piskin AK, Yavuz H, et al. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor[J]. Talanta, 2019, 204: 840–845. doi: 10.1016/j.talanta.2019.06.060
    Chiu CH, Lei KF, Yeh WL, et al. Comparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening[J]. J Orthop Surg Res, 2017, 12(1): 149. doi: 10.1186/s13018-017-0652-6
    Siska EK, Weisman I, Romano J, et al. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring[J]. PLoS One, 2017, 12(9): e0185498. doi: 10.1371/journal.pone.0185498
    Bernhard K, Stahl C, Martens R, et al. A novel genetically encoded single use sensory cellular test system measures bicarbonate concentration changes in living cells[J]. Sensors, 2020, 20(6): 1570. doi: 10.3390/s20061570
    Ma RL, Zheng HZ, Liu Q, et al. Exploring the interactions between engineered nanomaterials and immune cells at 3D nano-bio interfaces to discover potent nano-adjuvants[J]. Nanomed Nanotechnol Biol Med, 2019, 21: 102037. doi: 10.1016/j.nano.2019.102037
    Snyder RA, Ellison CK, Severin GB, et al. Surface sensing stimulates cellular differentiation in Caulobacter crescentus[J]. Proc Natl Acad Sci USA, 2020, 117(30): 17984–17991. doi: 10.1073/pnas.1920291117
    Stanley SA, Sauer J, Kane RS, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles[J]. Nat Med, 2015, 21(1): 92–98. doi: 10.1038/nm.3730
    Mansouri M, Strittmatter T, Fussenegger M. Light-controlled mammalian cells and their therapeutic applications in synthetic biology[J]. Adv Sci, 2019, 6(1): 1800952. doi: 10.1002/advs.201800952
    Ye HF, Fussenegger M. Optogenetic medicine: synthetic therapeutic solutions precision-guided by light[J]. Cold Spring Harb Perspect Med, 2019, 9(9): a034371. doi: 10.1101/cshperspect.a034371
    Shao JW, Xue S, Yu GL, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice[J]. Sci Transl Med, 2017, 9(387): eaal2298. doi: 10.1126/scitranslmed.aal2298
    Li GX, Wang FF, Yang WG, et al. Development of an image biosensor based on an optogenetically engineered cell for visual prostheses[J]. Nanoscale, 2019, 11(28): 13213–13218. doi: 10.1039/C9NR01688K
    Daringer NM, Dudek RM, Schwarz KA, et al. Modular extracellular sensor architecture for engineering mammalian cell-based devices[J]. ACS Synth Biol, 2014, 3(12): 892–902. doi: 10.1021/sb400128g
    Jeon H, Lee E, Kim D, et al. Cell-based biosensors based on intein-mediated protein engineering for detection of biologically active signaling molecules[J]. Anal Chem, 2018, 90(16): 9779–9786. doi: 10.1021/acs.analchem.8b01481
    Hoffman T, Antovski P, Tebon P, et al. Synthetic biology and tissue engineering: toward fabrication of complex and smart cellular constructs[J]. Adv Funct Mater, 2020, 30(26): 1909882. doi: 10.1002/adfm.201909882
    Matsunaga S, Jeremiah SS, Miyakawa K, et al. Engineering cellular biosensors with customizable antiviral responses targeting hepatitis B virus[J]. iScience, 2020, 23(3): 100867. doi: 10.1016/j.isci.2020.100867
    Xie MQ, Ye HF, Wang H, et al. β-cell-mimetic designer cells provide closed-loop glycemic control[J]. Science, 2016, 354(6317): 1296–1301. doi: 10.1126/science.aaf4006
    Scheller L, Fussenegger M. From synthetic biology to human therapy: engineered mammalian cells[J]. Curr Opin Biotechnol, 2019, 58: 108–116. doi: 10.1016/j.copbio.2019.02.023
    Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor[J]. Science, 2015, 350(6258): aab4077. doi: 10.1126/science.aab4077
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (48) PDF downloads(10) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint