• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Liu Xiaowei, Nakamura Fumihiko. Mechanotransduction, nanotechnology, and nanomedicine[J]. The Journal of Biomedical Research, 2021, 35(4): 284-293. doi: 10.7555/JBR.34.20200063
Citation: Liu Xiaowei, Nakamura Fumihiko. Mechanotransduction, nanotechnology, and nanomedicine[J]. The Journal of Biomedical Research, 2021, 35(4): 284-293. doi: 10.7555/JBR.34.20200063

Mechanotransduction, nanotechnology, and nanomedicine

doi: 10.7555/JBR.34.20200063
More Information
  • Corresponding author: Fumihiko Nakamura, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. Tel: +86-22-87401830, E-mail: fnakamura@tju.edu.cn
  • Received: 2020-04-29
  • Revised: 2020-05-26
  • Accepted: 2020-05-29
  • Published: 2020-07-31
  • Issue Date: 2021-07-28
  • Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.


  • loading
  • [1]
    Urner S, Kelly-Goss M, Peirce SM, et al. Mechanotransduction in blood and lymphatic vascular development and disease[J]. Adv Pharmacol, 2018, 81: 155–208. doi: 10.1016/bs.apha.2017.08.009
    Malakou LS, Gargalionis AN, Piperi C, et al. Molecular mechanisms of mechanotransduction in psoriasis[J]. Ann Transl Med, 2018, 6(12): 245. doi: 10.21037/atm.2018.04.09
    Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, et al. Mechanotransduction in tumor progression: the dark side of the force[J]. J Cell Biol, 2018, 217(5): 1571–1587. doi: 10.1083/jcb.201701039
    Nakamura F. Mechanotransduction in blood cells[J]. Asia-Pacific J Blood Types Genes, 2017, 1(1): 1–9.
    Maycas M, Esbrit P, Gortázar AR. Molecular mechanisms in bone mechanotransduction[J]. Histol Histopathol, 2017, 32(8): 751–760.
    Lyon RC, Zanella F, Omens JH, et al. Mechanotransduction in cardiac hypertrophy and failure[J]. Circ Res, 2015, 116(8): 1462–1476. doi: 10.1161/CIRCRESAHA.116.304937
    Vincent TL. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix[J]. Curr Opin Pharmacol, 2013, 13(3): 449–454. doi: 10.1016/j.coph.2013.01.010
    Cheng CM, Tang MJ. Review series - mechanotransduction from physiology to disease states[J]. J Cell Mol Med, 2013, 17(2): 223–224. doi: 10.1111/jcmm.12037
    French AS. Mechanotransduction[J]. Annu Rev Physiol, 1992, 54: 135–152. doi: 10.1146/annurev.ph.54.030192.001031
    Petridou NI, Spiró Z, Heisenberg CP. Multiscale force sensing in development[J]. Nat Cell Biol, 2017, 19(6): 581–588. doi: 10.1038/ncb3524
    Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions[J]. Nat Rev Mol Cell Biol, 2006, 7(4): 265–275. doi: 10.1038/nrm1890
    Najrana T, Sanchez-Esteban J. Mechanotransduction as an adaptation to gravity[J]. Front Pediatr, 2016, 4: 140.
    Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 802–812.
    Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 34–43. doi: 10.1038/nrm2592
    Uroz M, Wistorf S, Serra-Picamal X, et al. Regulation of cell cycle progression by cell-cell and cell-matrix forces[J]. Nat Cell Biol, 2018, 20(6): 646–654. doi: 10.1038/s41556-018-0107-2
    Young SM, Liu S, Joshi R, et al. Localization and stretch-dependence of lung elastase activity in development and compensatory growth[J]. J Appl Physiol (1985), 2015, 118(7): 921–931. doi: 10.1152/japplphysiol.00954.2014
    Liu J, Yu W, Liu Y, et al. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway[J]. Sci Rep, 2016, 6(1): 21112. doi: 10.1038/srep21112
    Wang E. Age-dependent atrophy and microgravity travel: what do they have in common?[J]. FASEB J, 1999, 13(9001): S167–S174.
    Blaber E, Marçal H, Burns BP. Bioastronautics: the influence of microgravity on astronaut health[J]. Astrobiology, 2010, 10(5): 463–473. doi: 10.1089/ast.2009.0415
    Bamman MM, Roberts BM, Adams GR. Molecular regulation of exercise-induced muscle fiber hypertrophy[J]. Cold Spring Harb Perspect Med, 2018, 8(6): a029751. doi: 10.1101/cshperspect.a029751
    Olsen LA, Nicoll JX, Fry AC. The skeletal muscle fiber: a mechanically sensitive cell[J]. Eur J Appl Physiol, 2019, 119(2): 333–349. doi: 10.1007/s00421-018-04061-x
    Kim HJ, Choi YS, Jeong MJ, et al. Expression of UNCL during development of periodontal tissue and response of periodontal ligament fibroblasts to mechanical stress in vivo and in vitro[J]. Cell Tissue Res, 2007, 327(1): 25–31.
    O'Conor CJ, Case N, Guilak F. Mechanical regulation of chondrogenesis[J]. Stem Cell Res Ther, 2013, 4(4): 61. doi: 10.1186/scrt211
    Fearing BV, Hernandez PA, Setton LA, et al. Mechanotransduction and cell biomechanics of the intervertebral disc[J]. JOR Spine, 2018, 1(3): e1026. doi: 10.1002/jsp2.1026
    Bradamante S, Barenghi L, Maier JAM. Stem cells toward the future: the space challenge[J]. Life (Basel), 2014, 4(2): 267–280.
    Ivanovska IL, Shin JW, Swift J, et al. Stem cell mechanobiology: diverse lessons from bone marrow[J]. Trends Cell Biol, 2015, 25(9): 523–532. doi: 10.1016/j.tcb.2015.04.003
    Wei SC, Yang J. Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition[J]. Trends Cell Biol, 2016, 26(2): 111–120. doi: 10.1016/j.tcb.2015.09.009
    Sokolov I, Iyer S, Woodworth CD. Recovery of elasticity of aged human epithelial cells in vitro[J]. Nanomedicine, 2006, 2(1): 31–36. doi: 10.1016/j.nano.2005.12.002
    Pelissier FA, Garbe JC, Ananthanarayanan B, et al. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors[J]. Cell Rep, 2014, 7(6): 1926–1939. doi: 10.1016/j.celrep.2014.05.021
    Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change[J]. Physiol Genomics, 2015, 47(4): 113–128. doi: 10.1152/physiolgenomics.00117.2014
    Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction[J]. Nat Rev Mol Cell Biol, 2017, 18(12): 717–727. doi: 10.1038/nrm.2017.101
    Barzegari A, Omidi Y, Ostadrahimi A, et al. The role of Piezo proteins and cellular mechanosensing in tuning the fate of transplanted stem cells[J]. Cell Tissue Res, 2020, 381(1): 1–12. doi: 10.1007/s00441-020-03191-z
    Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179–183. doi: 10.1038/nature10137
    Huang XW, Yang NH, Fiore VF, et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction[J]. Am J Respir Cell Mol Biol, 2012, 47(3): 340–348. doi: 10.1165/rcmb.2012-0050OC
    Jaalouk DE, Lammerding J. Mechanotransduction gone awry[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 63–73. doi: 10.1038/nrm2597
    Asano S, Ito S, Morosawa M, et al. Cyclic stretch enhances reorientation and differentiation of 3-D culture model of human airway smooth muscle[J]. Biochem Biophys Rep, 2018, 16: 32–38.
    Yamamoto K, Ando J. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases[J]. Am J Physiol Heart Circ Physiol, 2015, 309(7): H1178–H185. doi: 10.1152/ajpheart.00241.2015
    Takahara N, Ito S, Furuya K, et al. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2014, 51(6): 772–782. doi: 10.1165/rcmb.2014-0008OC
    Liu C, Montell C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism[J]. Biochem Biophys Res Commun, 2015, 460(1): 22–25. doi: 10.1016/j.bbrc.2015.02.067
    Vitzthum C, Clauss WG, Fronius M. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress[J]. Biochim Biophys Acta, 2015, 1848: 2942–2951. doi: 10.1016/j.bbamem.2015.09.009
    Yang L, Yang Y, Wang S, et al. In vitro mechanical loading models for periodontal ligament cells: from two-dimensional to three-dimensional models[J]. Arch Oral Biol, 2015, 60(3): 416–424. doi: 10.1016/j.archoralbio.2014.11.012
    Chukkapalli SS, Lele TP. Periodontal cell mechanotransduction[J]. Open Biol, 2018, 8(9): 180053. doi: 10.1098/rsob.180053
    Anderson DE, Johnstone B. Dynamic mechanical compression of chondrocytes for tissue engineering: a critical review[J]. Front Bioeng Biotechnol, 2017, 5: 76. doi: 10.3389/fbioe.2017.00076
    Gongol B, Marin T, Zhang J, et al. Shear stress regulation of miR-93 and miR-484 maturation through nucleolin[J]. Proc Natl Acad Sci U S A, 2019, 116(26): 12974–12979. doi: 10.1073/pnas.1902844116
    Torday JS. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology[J]. Adv Space Res, 2003, 32(8): 1569–1576. doi: 10.1016/S0273-1177(03)90397-8
    Baio J, Martinez AF, Silva I, et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties[J]. npj Microgravity, 2018, 4: 13. doi: 10.1038/s41526-018-0048-x
    Lu DY, Sun SJ, Zhang F, et al. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite[J]. FASEB J, 2019, 33(3): 4273–4286. doi: 10.1096/fj.201802075R
    Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering[J]. Biomed Res Int, 2013, 2013: 269724.
    Jiang L, Sun ZL, Chen XF, et al. Cells sensing mechanical cues: stiffness influences the lifetime of cell-extracellular matrix interactions by affecting the loading rate[J]. ACS Nano, 2016, 10(1): 207–217. doi: 10.1021/acsnano.5b03157
    Gong Z, Szczesny SE, Caliari SR, et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates[J]. Proc Natl Acad Sci U S A, 2018, 115(12): E2686–E2695. doi: 10.1073/pnas.1716620115
    Hieda M. Signal transduction across the nuclear envelope: role of the LINC complex in bidirectional signaling[J]. Cells, 2019, 8(2): 124. doi: 10.3390/cells8020124
    Zhao QC, Zhou H, Li XM, et al. The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism[J]. FEBS J, 2019, 286(13): 2461–2470. doi: 10.1111/febs.14711
    Nakamura F, Stossel TP, Hartwig JH. The filamins: organizers of cell structure and function[J]. Cell Adh Migr, 2011, 5(2): 160–169. doi: 10.4161/cam.5.2.14401
    Ehrlicher AJ, Nakamura F, Hartwig JH, et al. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A[J]. Nature, 2011, 478(7368): 260–263. doi: 10.1038/nature10430
    Razinia Z, Mäkelä T, Ylänne J, et al. Filamins in mechanosensing and signaling[J]. Annu Rev Biophys, 2012, 41: 227–246. doi: 10.1146/annurev-biophys-050511-102252
    Wang L, Nakamura F. Identification of Filamin A mechanobinding partner I: smoothelin specifically interacts with the filamin A Mechanosensitive domain 21[J]. Biochemistry, 2019, 58(47): 4726–4736. doi: 10.1021/acs.biochem.9b00100
    Wang J, Nakamura F. Identification of Filamin A mechanobinding partner Ⅱ: fimbacin is a novel actin cross-linking and Filamin A binding protein[J]. Biochemistry, 2019, 58(47): 4737–4743. doi: 10.1021/acs.biochem.9b00101
    Haining AWM, Rahikainen R, Cortes E, et al. Mechanotransduction in talin through the interaction of the R8 domain with DLC1[J]. PLoS Biol, 2018, 16(7): e2005599. doi: 10.1371/journal.pbio.2005599
    Zhang XH, Halvorsen K, Zhang CZ, et al. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor[J]. Science, 2009, 324(5932): 1330–1334. doi: 10.1126/science.1170905
    Crawley JTB, de Groot R, Xiang YZ, et al. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor[J]. Blood, 2011, 118(12): 3212–3221. doi: 10.1182/blood-2011-02-306597
    Goutman JD, Elgoyhen AB, Gómez-Casati ME. Cochlear hair cells: the sound-sensing machines[J]. FEBS Lett, 2015, 589(22): 3354–3361. doi: 10.1016/j.febslet.2015.08.030
    Chen CH, Lin YH, Chen CH, et al. Transforming growth factor beta 1 mediates the low-frequency vertical vibration enhanced production of tenomodulin and type I collagen in rat Achilles tendon[J]. PLoS One, 2018, 13(10): e0205258. doi: 10.1371/journal.pone.0205258
    Turner DC, Edmiston AM, Zohner YE, et al. Transient intraocular pressure fluctuations: source, magnitude, frequency, and associated mechanical energy[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2572–2582. doi: 10.1167/iovs.19-26600
    Mathieu S, Manneville JB. Intracellular mechanics: connecting rheology and mechanotransduction[J]. Curr Opin Cell Biol, 2019, 56: 34–44. doi: 10.1016/j.ceb.2018.08.007
    Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 75–82. doi: 10.1038/nrm2594
    Belaadi N, Millon-Frémillon A, Aureille J, et al. Analyzing mechanotransduction through the LINC complex in isolated nuclei[M]//Gundersen GG, Worman HJ. The LINC Complex. New York: Humana Press, 2018: 73–80.
    Wang SS, Stoops E, Cp U, et al. Mechanotransduction via the LINC complex regulates DNA replication in myonuclei[J]. J Cell Biol, 2018, 217(6): 2005–2018. doi: 10.1083/jcb.201708137
    Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores[J]. Cell, 2017, 171(6): 1397–1410.e14. doi: 10.1016/j.cell.2017.10.008
    Shim JW, Wise DA, Elder SH. Effect of cytoskeletal disruption on Mechanotransduction of hydrostatic pressure by C3H10T1/2 murine fibroblasts[J]. Open Orthop J, 2008, 2: 155–162. doi: 10.2174/1874325000802010155
    Thomasy SM, Morgan JT, Wood JA, et al. Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells[J]. Exp Eye Res, 2013, 113: 66–73. doi: 10.1016/j.exer.2013.05.014
    Yang B, McJunkin K. CRISPR screening strategies for microRNA target identification[J]. FEBS J, 2020, . doi: 10.1111/febs.15218
    Calderwood DA, Huttenlocher A, Kiosses WB, et al. Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration[J]. Nat Cell Biol, 2001, 3(12): 1060–1068. doi: 10.1038/ncb1201-1060
    Ohta Y, Hartwig JH, Stossel TP. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling[J]. Nat Cell Biol, 2006, 8(8): 803–814. doi: 10.1038/ncb1437
    Fal K, Asnacios A, Chabouté ME, et al. Nuclear envelope: a new frontier in plant mechanosensing?[J]. Biophys Rev, 2017, 9(4): 389–403. doi: 10.1007/s12551-017-0302-6
    Hirata H, Tatsumi H, Sokabe M. Mechanical forces facilitate actin polymerization at focal adhesions in a Zyxin-dependent manner[J]. J Cell Sci, 2008, 121(17): 2795–2804. doi: 10.1242/jcs.030320
    Moreno-Vicente R, Pavon DM, Martin-Padura I, et al. Caveolin-1 Modulates Mechanotransduction responses to substrate stiffness through actin-dependent control of YAP[J]. Cell Rep, 2018, 25(6): 1622–1635.e6. doi: 10.1016/j.celrep.2018.10.024
    Chang L, Azzolin L, Di Biagio D, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ[J]. Nature, 2018, 563(7730): 265–269. doi: 10.1038/s41586-018-0658-1
    Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ[J]. Nat Rev Mol Cell Biol, 2012, 13(9): 591–600. doi: 10.1038/nrm3416
    Zhang XQ, Hu XY, Lei HZ, et al. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces[J]. Nanoscale, 2016, 8(11): 6008–6013. doi: 10.1039/C5NR08713A
    Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription[J]. Cell Mol Biol Lett, 2016, 21(1): 28. doi: 10.1186/s11658-016-0028-7
    Miralles F, Posern G, Zaromytidou AI, et al. Actin dynamics control SRF activity by regulation of its coactivator MAL[J]. Cell, 2003, 113(3): 329–342. doi: 10.1016/S0092-8674(03)00278-2
    Hu X, Liu ZZ, Chen XY, et al. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation[J]. Nat Commun, 2019, 10(1): 1695. doi: 10.1038/s41467-019-09636-6
    Dorland YL, Huveneers S. Cell-cell junctional mechanotransduction in endothelial remodeling[J]. Cell Mol Life Sci, 2017, 74(2): 279–292. doi: 10.1007/s00018-016-2325-8
    Chen TC, Saw TB, Mège RM, et al. Mechanical forces in cell monolayers[J]. J Cell Sci, 2018, 131(24): jcs218156. doi: 10.1242/jcs.218156
    Das T, Safferling K, Rausch S, et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells[J]. Nat Cell Biol, 2015, 17(3): 276–287. doi: 10.1038/ncb3115
    Chakraborty S, Njah K, Pobbati AV, et al. Agrin as a Mechanotransduction signal regulating YAP through the hippo pathway[J]. Cell Rep, 2017, 18(10): 2464–2479. doi: 10.1016/j.celrep.2017.02.041
    Wu PH, Aroush DRB, Asnacios A, et al. A comparison of methods to assess cell mechanical properties[J]. Nat Methods, 2018, 15(7): 491–498. doi: 10.1038/s41592-018-0015-1
    Furuike S, Ito T, Yamazaki M. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy[J]. FEBS Lett, 2001, 498(1): 72–75. doi: 10.1016/S0014-5793(01)02497-8
    Ferrer JM, Lee H, Chen J, et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins[J]. Proc Natl Acad Sci U S A, 2008, 105(27): 9221–9226. doi: 10.1073/pnas.0706124105
    Chen H, Yuan GH, Winardhi RS, et al. Dynamics of equilibrium folding and unfolding transitions of Titin immunoglobulin domain under constant forces[J]. J Am Chem Soc, 2015, 137(10): 3540–3546. doi: 10.1021/ja5119368
    Cossio P, Hummer G, Szabo A. On artifacts in single-molecule force spectroscopy[J]. Proc Natl Acad Sci U S A, 2015, 112(46): 14248–14253. doi: 10.1073/pnas.1519633112
    Rief M, Gautel M, Oesterhelt F, et al. Reversible unfolding of individual Titin immunoglobulin domains by AFM[J]. Science, 1997, 276(5315): 1109–1112. doi: 10.1126/science.276.5315.1109
    Chen H, Zhu XY, Cong PW, et al. Differential mechanical stability of filamin A rod segments[J]. Biophys J, 2011, 101(5): 1231–1237. doi: 10.1016/j.bpj.2011.07.028
    Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nat Methods, 2008, 5(6): 491–505. doi: 10.1038/nmeth.1218
    Rognoni L, Stigler J, Pelz B, et al. Dynamic force sensing of filamin revealed in single-molecule experiments[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19679–19684. doi: 10.1073/pnas.1211274109
    Erickson HP. Reversible unfolding of fibronectin type Ⅲ and immunoglobulin domains provides the structural basis for stretch and elasticity of Titin and fibronectin[J]. Proc Natl Acad Sci U S A, 1994, 91(21): 10114–10118. doi: 10.1073/pnas.91.21.10114
    Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps[J]. Nature, 1994, 368(6467): 113–119. doi: 10.1038/368113a0
    Hunt AJ, Gittes F, Howard J. The force exerted by a single kinesin molecule against a viscous load[J]. Biophys J, 1994, 67(2): 766–781. doi: 10.1016/S0006-3495(94)80537-5
    Grashoff C, Hoffman BD, Brenner MD, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics[J]. Nature, 2010, 466(7303): 263–266. doi: 10.1038/nature09198
    Ringer P, Weißl A, Cost AL, et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1[J]. Nat Methods, 2017, 14(11): 1090–1096. doi: 10.1038/nmeth.4431
    del Rio A, Perez-Jimenez R, Liu RC, et al. Stretching single talin rod molecules activates vinculin binding[J]. Science, 2009, 323(5914): 638–641. doi: 10.1126/science.1162912
    Charras G, Yap AS. Tensile forces and Mechanotransduction at cell-cell junctions[J]. Curr Biol, 2018, 28(8): R445–R457. doi: 10.1016/j.cub.2018.02.003
    Ma VPY, Salaita K. DNA nanotechnology as an emerging tool to study Mechanotransduction in living systems[J]. Small, 2019, 15(26): 1900961. doi: 10.1002/smll.201900961
    Huang Q, Lee J, Arce FT, et al. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions[J]. Nat Photonics, 2017, 11(6): 352–355. doi: 10.1038/nphoton.2017.74
    Seo D, Southard KM, Kim JW, et al. A Mechanogenetic toolkit for interrogating cell signaling in space and time[J]. Cell, 2016, 165(6): 1507–1518. doi: 10.1016/j.cell.2016.04.045
    Shen YJ, Cheng Y, Uyeda TQP, et al. Cell Mechanosensors and the possibilities of using magnetic nanoparticles to study them and to modify cell fate[J]. Ann Biomed Eng, 2017, 45(10): 2475–2486. doi: 10.1007/s10439-017-1884-7
    Gonçalves AI, Miranda MS, Rodrigues MT, et al. Magnetic responsive cell-based strategies for diagnostics and therapeutics[J]. Biomed Mater, 2018, 13(5): 054001. doi: 10.1088/1748-605X/aac78b
    Nagayama K, Inoue T, Hamada Y, et al. Direct application of mechanical stimulation to cell adhesion sites using a novel magnetic-driven micropillar substrate[J]. Biomed Microdevices, 2018, 20(4): 85. doi: 10.1007/s10544-018-0328-y
    Norregaard K, Metzler R, Ritter CM, et al. Manipulation and motion of organelles and single molecules in living cells[J]. Chem Rev, 2017, 117(5): 4342–4375. doi: 10.1021/acs.chemrev.6b00638
    Zhao DY, Liu SY, Gao Y. Single-molecule manipulation and detection[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(3): 231–237. doi: 10.1093/abbs/gmx146
    Cordova JC, Das DK, Manning HW, et al. Combining single-molecule manipulation and single-molecule detection[J]. Curr Opin Struct Biol, 2014, 28: 142–148. doi: 10.1016/j.sbi.2014.08.010
    Fisher TE, Marszalek PE, Fernandez JM. Stretching single molecules into novel conformations using the atomic force microscope[J]. Nat Struct Biol, 2000, 7(9): 719–724. doi: 10.1038/78936
    Fotiadis D, Scheuring S, Muller SA, et al. Imaging and manipulation of biological structures with the AFM[J]. Micron, 2002, 33(4): 385–397. doi: 10.1016/S0968-4328(01)00026-9
    Ando T. Directly watching biomolecules in action by high-speed atomic force microscopy[J]. Biophys Rev, 2017, 9(4): 421–429. doi: 10.1007/s12551-017-0281-7
    Charras GT, Lehenkari PP, Horton MA. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions[J]. Ultramicroscopy, 2001, 86(1-2): 85–95. doi: 10.1016/S0304-3991(00)00076-0
    Targosz-Korecka M, Malek-Zietek KE, Brzezinka GD, et al. Morphological and nanomechanical changes in mechanosensitive endothelial cells induced by colloidal AFM probes[J]. Scanning, 2016, 38(6): 654–664. doi: 10.1002/sca.21313
    Discher D, Dong C, Fredberg JJ, et al. Biomechanics: cell research and applications for the next decade[J]. Ann Biomed Eng, 2009, 37(5): 847–859. doi: 10.1007/s10439-009-9661-x
    Pemberton GD, Childs P, Reid S, et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking[J]. Nanomedicine (Lond), 2015, 10(4): 547–560. doi: 10.2217/nnm.14.134
    Teo BK, Wong ST, Lim CK, et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase[J]. ACS Nano, 2013, 7(6): 4785–4798. doi: 10.1021/nn304966z
    Wu YN, Law JBK, He AY, et al. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation[J]. Nanomedicine, 2014, 10(7): 1507–1516. doi: 10.1016/j.nano.2014.04.002
    Panadero JA, Lanceros-Mendez S, Ribelles JLG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading[J]. Acta Biomater, 2016, 33: 1–12. doi: 10.1016/j.actbio.2016.01.037
    Dobbenga S, Fratila-Apachitei LE, Zadpoor AA. Nanopattern-induced osteogenic differentiation of stem cells - A systematic review[J]. Acta Biomater, 2016, 46: 3–14. doi: 10.1016/j.actbio.2016.09.031
    Tay CY, Koh CG, Tan NS, et al. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine[J]. Nanomedicine (Lond), 2013, 8(4): 623–638. doi: 10.2217/nnm.13.31
    Nakayama KH, Quarta M, Paine P, et al. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration[J]. Commun Biol, 2019, 2(1): 170. doi: 10.1038/s42003-019-0416-4
    Catanesi M, Panella G, Benedetti E, et al. YAP/TAZ mechano-transduction as the underlying mechanism of neuronal differentiation induced by reduced graphene oxide[J]. Nanomedicine (Lond), 2018, 13(24): 3091–3106. doi: 10.2217/nnm-2018-0269
    Jawad H, Boccaccini AR, Ali NN, et al. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications[J]. Nanotoxicology, 2011, 5(3): 372–380. doi: 10.3109/17435390.2010.516844
    Li N, Fan XL, Tang KY, et al. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide[J]. Colloids Surf B Biointerfaces, 2016, 140: 287–296. doi: 10.1016/j.colsurfb.2015.12.005
    Pan LL, Pei XB, He R, et al. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application[J]. Colloids Surf B Biointerfaces, 2012, 93: 226–234. doi: 10.1016/j.colsurfb.2012.01.011
    Rodriguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, et al. Potential of graphene for tissue engineering applications[J]. Transl Res, 2015, 166(4): 399–400. doi: 10.1016/j.trsl.2015.04.003
    Chen GY, Pang DWP, Hwang SM, et al. A graphene-based platform for induced pluripotent stem cells culture and differentiation[J]. Biomaterials, 2012, 33(2): 418–427. doi: 10.1016/j.biomaterials.2011.09.071
    Bayir E, Sendemir A, Missirlis YF. Mechanobiology of cells and cell systems, such as organoids[J]. Biophys Rev, 2019, 11(5): 721–728. doi: 10.1007/s12551-019-00590-7
    Abdel Fattah AR, Ranga A. Nanoparticles as versatile tools for Mechanotransduction in tissues and organoids[J]. Front Bioeng Biotechnol, 2020, 8: 240. doi: 10.3389/fbioe.2020.00240
    Wei Q, Huang CJ, Zhang Y, et al. Mechanotargeting: mechanics-dependent cellular uptake of nanoparticles[J]. Adv Mater, 2018, 30(27): 1707464. doi: 10.1002/adma.201707464
    Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression[J]. Nat Rev Cancer, 2009, 9(2): 108–122. doi: 10.1038/nrc2544
    Mpekris F, Angeli S, Pirentis AP, et al. Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery[J]. Biomech Model Mechanobiol, 2015, 14(6): 1391–1402. doi: 10.1007/s10237-015-0682-0
    Korin N, Kanapathipillai M, Matthews BD, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels[J]. Science, 2012, 337(6095): 738–742. doi: 10.1126/science.1217815
    Henstock JR, Rotherham M, Rashidi H, et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy[J]. Stem Cells Transl Med, 2014, 3(11): 1363–1374. doi: 10.5966/sctm.2014-0017
    Tay A, Di Carlo D. Remote neural stimulation using magnetic nanoparticles[J]. Curr Med Chem, 2017, 24(5): 537–548. doi: 10.2174/0929867323666160814000442
    Jiang ZY, Shan KZ, Song J, et al. Toxic effects of magnetic nanoparticles on normal cells and organs[J]. Life Sci, 2019, 220: 156–161. doi: 10.1016/j.lfs.2019.01.056
    Rezvani E, Rafferty A, McGuinness C, et al. Adverse effects of nanosilver on human health and the environment[J]. Acta Biomater, 2019, 94: 145–159. doi: 10.1016/j.actbio.2019.05.042
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (525) PDF downloads(73) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint