Citation: | Higgins Victoria, Adeli Khosrow. Postprandial dyslipidemia in insulin resistant states in adolescent populations[J]. The Journal of Biomedical Research, 2020, 34(5): 328-342. DOI: 10.7555/JBR.34.20190094 |
[1] |
Wilson PWF, D’Agostino RB, Parise H, et al. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus[J]. Circulation, 2005, 112(20): 3066–3072. doi: 10.1161/CIRCULATIONAHA.105.539528
|
[2] |
Stern MP, Williams K, González-Villalpando C, et al. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease?[J]. Diabetes Care, 2004, 27(11): 2676–2681. doi: 10.2337/diacare.27.11.2676
|
[3] |
Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome[J]. Diabetes Care, 2001, 24(4): 683–689. doi: 10.2337/diacare.24.4.683
|
[4] |
Hu G, Qiao Q, Tuomilehto J, et al. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women[J]. Arch Intern Med, 2004, 164(10): 1066–1076. doi: 10.1001/archinte.164.10.1066
|
[5] |
Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. 1988[J]. Nutr Burbank Los Angel Cty Calif, 1997, 13(1): 65.
|
[6] |
Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7): 539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
|
[7] |
Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR)[J]. Diabet Med, 1999, 16(5): 442–443. doi: 10.1046/j.1464-5491.1999.00059.x
|
[8] |
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel Ⅲ)[J]. JAMA, 2001, 285(19): 2486–2497. doi: 10.1001/jama.285.19.2486
|
[9] |
Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome[J]. Endocr Pract, 2003, 9(3): 237–252.
|
[10] |
Zimmet P, Magliano D, Matsuzawa Y, et al. The metabolic syndrome: a global public health problem and a new definition[J]. J Atheroscler Thromb, 2005, 12(6): 295–300. doi: 10.5551/jat.12.295
|
[11] |
Chu NF, Rimm EB, Wang DJ, et al. Clustering of cardiovascular disease risk factors among obese schoolchildren: the Taipei Children Heart Study[J]. Am J Clin Nutr, 1998, 67(6): 1141–1146. doi: 10.1093/ajcn/67.6.1141
|
[12] |
Duncan GE, Li SM, Zhou XH. Prevalence and trends of a metabolic syndrome phenotype among U.S. Adolescents, 1999-2000[J]. Diabetes Care, 2004, 27(10): 2438–2443. doi: 10.2337/diacare.27.10.2438
|
[13] |
Cook S, Auinger P, Li CY, et al. Metabolic syndrome rates in united states adolescents, from the national health and nutrition examination survey, 1999-2002[J]. J Pediatr, 2008, 152(2): 165–170.e2. doi: 10.1016/j.jpeds.2007.06.004
|
[14] |
Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2014, 384(9945): 766–781. doi: 10.1016/S0140-6736(14)60460-8
|
[15] |
Skinner AC, Ravanbakht SN, Skelton JA, et al. Prevalence of obesity and severe obesity in US children, 1999-2016[J]. Pediatrics, 2018, 141(3): e20173459. doi: 10.1542/peds.2017-3459
|
[16] |
Hannon TS, Janosky J, Arslanian SA. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty[J]. Pediatr Res, 2006, 60(6): 759–763. doi: 10.1203/01.pdr.0000246097.73031.27
|
[17] |
Moran A, Jacobs Jr DR, Steinberger J, et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females[J]. Circulation, 2008, 117(18): 2361–2368. doi: 10.1161/CIRCULATIONAHA.107.704569
|
[18] |
Dai SF, Fulton JE, Harrist RB, et al. Blood lipids in children: age-related patterns and association with body-fat indices: project HeartBeat![J]. Am J Prev Med, 2009, 37(1 Suppl): S56–S64.
|
[19] |
Mellerio H, Alberti C, Druet C, et al. Novel modeling of reference values of cardiovascular risk factors in children aged 7 to 20 years[J]. Pediatrics, 2012, 129(4): e1020–e1029. doi: 10.1542/peds.2011-0449
|
[20] |
Cook S, Weitzman M, Auinger P, et al. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988-1994[J]. Arch Pediatr Adolesc Med, 2003, 157(8): 821–827. doi: 10.1001/archpedi.157.8.821
|
[21] |
Zimmet P, Alberti KGMM, Kaufman F, et al. The metabolic syndrome in children and adolescents - an IDF consensus report[J]. Pediatr Diabetes, 2007, 8(5): 299–306. doi: 10.1111/j.1399-5448.2007.00271.x
|
[22] |
Viner RM, Segal TY, Lichtarowicz-Krynska E, et al. Prevalence of the insulin resistance syndrome in obesity[J]. Arch Dis Child, 2005, 90(1): 10–14. doi: 10.1136/adc.2003.036467
|
[23] |
Ahrens W, Moreno LA, Mårild S, et al. Metabolic syndrome in young children: definitions and results of the IDEFICS study[J]. Int J Obes, 2014, 38(S2): S4–S14. doi: 10.1038/ijo.2014.130
|
[24] |
Dietz WH. Health consequences of obesity in youth: childhood predictors of adult disease[J]. Pediatrics, 1998, 101(3): 518–525.
|
[25] |
Must A, Strauss RS. Risks and consequences of childhood and adolescent obesity[J]. Int J Obes Relat Metab Disord, 1999, 23(Suppl 2): S2–S11.
|
[26] |
Tirosh A, Shai I, Afek A, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease[J]. N Engl J Med, 2011, 364(14): 1315–1325. doi: 10.1056/NEJMoa1006992
|
[27] |
Morrison JA, Friedman LA, Gray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton Lipid Research Clinics Follow-up Study[J]. Pediatrics, 2007, 120(2): 340–345. doi: 10.1542/peds.2006-1699
|
[28] |
Hussain MM, Kancha RK, Zhou ZY, et al. Chylomicron assembly and catabolism: role of apolipoproteins and receptors[J]. Biochim Biophys Acta, 1996, 1300(3): 151–170. doi: 10.1016/0005-2760(96)00041-0
|
[29] |
Fraser R, Cliff WJ, Courtice FC. The effect of dietary fat load on the size and composition of chylomicrons in thoracic duct lymph[J]. Q J Exp Physiol Cogn Med Sci, 1968, 53(4): 390–398.
|
[30] |
Hayashi H, Fujimoto K, Cardelli JA, et al. Fat feeding increases size, but not number, of chylomicrons produced by small intestine[J]. Am J Physiol, 1990, 259(5): G709–G719. doi: 10.1152/ajpcell.1990.259.5.C709
|
[31] |
Guo QS, Avramoglu RK, Adeli K. Intestinal assembly and secretion of highly dense/lipid-poor apolipoprotein B48-containing lipoprotein particles in the fasting state: evidence for induction by insulin resistance and exogenous fatty acids[J]. Metabolism, 2005, 54(5): 689–697. doi: 10.1016/j.metabol.2004.12.014
|
[32] |
Björnson E, Packard CJ, Adiels M, et al. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics[J]. J Intern Med, 2019, 285(5): 562–577. doi: 10.1111/joim.12877
|
[33] |
Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology[J]. Science, 1988, 240(4852): 622–630. doi: 10.1126/science.3283935
|
[34] |
Barrows BR, Parks EJ. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states[J]. J Clin Endocrinol Metab, 2006, 91(4): 1446–1452. doi: 10.1210/jc.2005-1709
|
[35] |
Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport[J]. Circ Res, 2005, 96(12): 1221–1232. doi: 10.1161/01.RES.0000170946.56981.5c
|
[36] |
Maillot F, Garrigue MA, Pinault M, et al. Changes in plasma triacylglycerol concentrations after sequential lunch and dinner in healthy subjects[J]. Diabetes Metab, 2005, 31(1): 69–77. doi: 10.1016/S1262-3636(07)70169-6
|
[37] |
Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine[J]. Eur Heart J, 2016, 37(25): 1944–1958. doi: 10.1093/eurheartj/ehw152
|
[38] |
Langsted A, Nordestgaard BG. Nonfasting lipids, lipoproteins, and apolipoproteins in individuals with and without diabetes: 58 434 individuals from the Copenhagen General Population Study[J]. Clin Chem, 2011, 57(3): 482–489. doi: 10.1373/clinchem.2010.157164
|
[39] |
Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction[J]. Circulation, 2008, 118(20): 2047–2056. doi: 10.1161/CIRCULATIONAHA.108.804146
|
[40] |
Iso H, Naito Y, Sato S, et al. Serum triglycerides and risk of coronary heart disease among Japanese men and women[J]. Am J Epidemiol, 2001, 153(5): 490–499. doi: 10.1093/aje/153.5.490
|
[41] |
Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, et al. Nonfasting triglycerides and risk of ischemic stroke in the general population[J]. JAMA, 2008, 300(18): 2142–2152. doi: 10.1001/jama.2008.621
|
[42] |
Nordestgaard BG, Benn M, Schnohr P, et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women[J]. JAMA, 2007, 298(3): 299–308. doi: 10.1001/jama.298.3.299
|
[43] |
Langsted A, Freiberg JJ, Tybjaerg-Hansen A, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up[J]. J Intern Med, 2011, 270(1): 65–75. doi: 10.1111/j.1365-2796.2010.02333.x
|
[44] |
Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis[J]. Atherosclerosis, 1994, 106(1): 83–97. doi: 10.1016/0021-9150(94)90085-X
|
[45] |
Nakamura H, Ikewaki K, Nishiwaki M, et al. Postprandial hyperlipemia and coronary artery disease[J]. Ann N Y Acad Sci, 1994, 748(1): 441–446.
|
[46] |
Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women[J]. JAMA, 2007, 298(3): 309–316. doi: 10.1001/jama.298.3.309
|
[47] |
Karpe F, Boquist S, Tang R, et al. Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides[J]. J Lipid Res, 2001, 42(1): 17–21.
|
[48] |
Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lu ng, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report[J]. Pediatrics, 2011, 128(Suppl 5): S213–S256.
|
[49] |
Anderson TJ, Grégoire J, Pearson GJ, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the Adult[J]. Can J Cardiol, 2016, 32(11): 1263–1282. doi: 10.1016/j.cjca.2016.07.510
|
[50] |
Cardiovascular disease: risk assessment and reduction, including lipid modification. Clinical guideline[CG181][EB/OL].[2017-07-28]. https://www.nice.org.uk/guidance/cg181.
|
[51] |
Adeli K, Taher J, Farr S, et al. Diabetic dyslipidaemia[M]//Biochemistry of Lipids, Lipoproteins and Membranes. 6th ed. Amsterdam: Elsevier, 2015.
|
[52] |
Cohn JS, Johnson EJ, Millar JS, et al. Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters[J]. J Lipid Res, 1993, 34(12): 2033–2040.
|
[53] |
Potts JL, Fisher RM, Humphreys SM, et al. Peripheral triacylglycerol extraction in the fasting and post-prandial states[J]. Clin Sci (Lond), 1991, 81(5): 621–626. doi: 10.1042/cs0810621
|
[54] |
Fielding CJ, Renston JP, Fielding PE. Metabolism of cholesterol-enriched chylomicrons. Catabolism of triglyceride by lipoprotein lipase of perfused heart and adipose tissues[J]. J Lipid Res, 1978, 19(6): 705–711.
|
[55] |
Dallinga-Thie GM, Kroon J, Borén J, et al. Triglyceride-rich lipoproteins and remnants: targets for therapy?[J]. Curr Cardiol Rep, 2016, 18(7): 67. doi: 10.1007/s11886-016-0745-6
|
[56] |
Proctor SD, Mamo JCL. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits[J]. Arterioscler Thromb Vasc Biol, 2003, 23(9): 1595–1600. doi: 10.1161/01.ATV.0000084638.14534.0A
|
[57] |
Proctor SD, Mamo JC. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall—evidence that plaque cholesterol may be derived from post-prandial lipoproteins[J]. Eur J Clin Invest, 1998, 28(6): 497–503. doi: 10.1046/j.1365-2362.1998.00317.x
|
[58] |
Mamo JCL, Wheeler JR. Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high-density lipoprotein, and albumin[J]. Coron Artery Dis, 1994, 5(8): 695–706. doi: 10.1097/00019501-199408000-00008
|
[59] |
Koopal C, Retterstøl K, Sjouke B, et al. Vascular risk factors, vascular disease, lipids and lipid targets in patients with familial dysbetalipoproteinemia: a European cross-sectional study[J]. Atherosclerosis, 2015, 240(1): 90–97. doi: 10.1016/j.atherosclerosis.2015.02.046
|
[60] |
Fielding CJ. Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration[J]. FASEB J, 1992, 6(13): 3162–3168. doi: 10.1096/fasebj.6.13.1327930
|
[61] |
Proctor SD, Vine DF, Mamo JCL. Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy[J]. Arterioscler Thromb Vasc Biol, 2004, 24(11): 2162–2167. doi: 10.1161/01.ATV.0000143859.75035.5a
|
[62] |
Proctor SD, Vine DF, Mamo JCL. Arterial retention of apolipoprotein B48- and B100-containing lipoproteins in atherogenesis[J]. Curr Opin Lipidol, 2002, 13(5): 461–470. doi: 10.1097/00041433-200210000-00001
|
[63] |
Eiselein L, Wilson DW, Lamé MW, et al. Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis[J]. Am J Physiol Heart Circ Physiol, 2007, 292(6): H2745–H2753. doi: 10.1152/ajpheart.00686.2006
|
[64] |
Vine DF, Takechi R, Russell JC, et al. Impaired postprandial apolipoprotein-B48 metabolism in the obese, insulin-resistant JCR: LA-cp rat: increased atherogenicity for the metabolic syndrome[J]. Atherosclerosis, 2007, 190(2): 282–290. doi: 10.1016/j.atherosclerosis.2006.03.013
|
[65] |
Kawakami A, Tanaka A, Nakajima K, et al. Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions[J]. Circ Res, 2002, 91(3): 263–271. doi: 10.1161/01.RES.0000028454.42385.8B
|
[66] |
Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis[J]. J Atheroscler Thromb, 2009, 16(3): 145–154. doi: 10.5551/jat.E598
|
[67] |
Domoto K, Taniguchi T, Takaishi H, et al. Chylomicron remnants induce monocyte chemoattractant protein-1 expression via p38 MAPK activation in vascular smooth muscle cells[J]. Atherosclerosis, 2003, 171(2): 193–200. doi: 10.1016/j.atherosclerosis.2003.08.016
|
[68] |
Lamarche B, Uffelman KD, Carpentier A, et al. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men[J]. J Clin Invest, 1999, 103(8): 1191–1199. doi: 10.1172/JCI5286
|
[69] |
Ivanova EA, Myasoedova VA, Melnichenko AA, et al. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases[J]. Oxid Med Cell Longev, 2017, 2017: 1273042.
|
[70] |
Higgins V, Adeli K. Postprandial dyslipidemia: pathophysiology and cardiovascular disease risk assessment[J]. EJIFCC, 2017, 28(3): 168–184.
|
[71] |
Adiels M, Olofsson SO, Taskinen MR, et al. Diabetic dyslipidaemia[J]. Curr Opin Lipidol, 2006, 17(3): 238–246. doi: 10.1097/01.mol.0000226115.97436.c0
|
[72] |
Cohn JS. Postprandial lipemia and remnant lipoproteins[J]. Clin Lab Med, 2006, 26(4): 773–786. doi: 10.1016/j.cll.2006.07.003
|
[73] |
Mamo JCL, Watts GF, Barrett PHR, et al. Postprandial dyslipidemia in men with visceral obesity: an effect of reduced LDL receptor expression?[J]. Am J Physiol Endocrinol Metab, 2001, 281(3): E626–E632. doi: 10.1152/ajpendo.2001.281.3.E626
|
[74] |
Hogue JC, Lamarche B, Tremblay AJ, et al. Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes[J]. J Lipid Res, 2007, 48(6): 1336–1342. doi: 10.1194/jlr.M600548-JLR200
|
[75] |
Chan DC, Watts GF, Barrett PH, et al. Markers of triglyceride-rich lipoprotein remnant metabolism in visceral obesity[J]. Clin Chem, 2002, 48(2): 278–283. doi: 10.1093/clinchem/48.2.278
|
[76] |
Duez H, Lamarche B, Uffelman KD, et al. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans[J]. Arterioscler Thromb Vasc Biol, 2006, 26(6): 1357–1363. doi: 10.1161/01.ATV.0000222015.76038.14
|
[77] |
Dane-Stewart CA, Watts GF, Barrett PHR, et al. Chylomicron remnant metabolism studied with a new breath test in postmenopausal women with and without type 2 diabetes mellitus[J]. Clin Endocrinol (Oxf), 2003, 58(4): 415–420. doi: 10.1046/j.1365-2265.2003.01731.x
|
[78] |
Wang CS, McConathy WJ, Kloer HU, et al. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-Ⅲ[J]. J Clin Invest, 1985, 75(2): 384–390. doi: 10.1172/JCI111711
|
[79] |
McConathy WJ, Gesquiere JC, Bass H, et al. Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-Ⅲ[J]. J Lipid Res, 1992, 33(7): 995–1003.
|
[80] |
Lewis GF, Uffelman K, Naples M, et al. Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian golden hamster[J]. Endocrinology, 2005, 146(1): 247–255. doi: 10.1210/en.2004-1143
|
[81] |
Haidari M, Leung N, Mahbub F, et al. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction[J]. J Biol Chem, 2002, 277(35): 31646–31655. doi: 10.1074/jbc.M200544200
|
[82] |
Vine DF, Glimm DR, Proctor SD. Intestinal lipid transport and chylomicron production: possible links to exacerbated atherogenesis in a rodent model of the metabolic syndrome[J]. Atheroscler Suppl, 2008, 9(2): 69–76. doi: 10.1016/j.atherosclerosissup.2008.05.004
|
[83] |
Hassanali Z, England A, O’Neill D, et al. Intestinal villi hypertrophy is associated with over-production of lymphatic chylomicrons during conditions of obesity and hyperinsulinemia in the JCR: LA-cp rodent[J]. Atheroscler Suppl, 2008, 9(2): 90.
|
[84] |
Zoltowska M, Ziv E, Delvin E, et al. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus: a model of insulin resistance and type 2 diabetes[J]. Diabetes, 2003, 52(10): 2539–2545. doi: 10.2337/diabetes.52.10.2539
|
[85] |
Curtin A, Deegan P, Owens D, et al. Elevated triglyceride-rich lipoproteins in diabetes. A study of apolipoprotein B-48[J]. Acta Diabetol, 1996, 33(3): 205–210. doi: 10.1007/BF02048544
|
[86] |
Federico LM, Naples M, Taylor D, et al. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine[J]. Diabetes, 2006, 55(5): 1316–1326. doi: 10.2337/db04-1084
|
[87] |
Nogueira JP, Maraninchi M, Béliard S, et al. Absence of acute inhibitory effect of insulin on chylomicron production in type 2 diabetes[J]. Arterioscler Thromb Vasc Biol, 2012, 32(4): 1039–1044. doi: 10.1161/ATVBAHA.111.242073
|
[88] |
Risser TR, Reaven GM, Reaven EP. Intestinal very low density lipoprotein secretion in insulin-deficient rats[J]. Diabetes, 1978, 27(9): 902–908. doi: 10.2337/diab.27.9.902
|
[89] |
Stifel FB, Herman RH, Rosensweig NS. Dietary regulation of glycolytic enzymes: Ⅲ. Adaptive changes in rat jejunal pyruvate kinase, phosphofructokinase, fructosediphosphatase and glycerol-3-phosphate dehydrogenase[J]. Biochim Biophys Acta, 1969, 184(1): 29–34. doi: 10.1016/0304-4165(69)90094-4
|
[90] |
Sasase T, Morinaga H, Yamamoto H, et al. Increased fat absorption and impaired fat clearance cause postprandial hypertriglyceridemia in Spontaneously Diabetic Torii rat[J]. Diabetes Res Clin Pract, 2007, 78(1): 8–15. doi: 10.1016/j.diabres.2007.02.020
|
[91] |
Kovacs P, Stumvoll M. Fatty acids and insulin resistance in muscle and liver[J]. Best Pract Res Clin Endocrinol Metab, 2005, 19(4): 625–635. doi: 10.1016/j.beem.2005.07.003
|
[92] |
Lewis GF, Naples M, Uffelman K, et al. Intestinal lipoprotein production is stimulated by an acute elevation of plasma free fatty acids in the fasting state: studies in insulin-resistant and insulin-sensitized Syrian golden hamsters[J]. Endocrinology, 2004, 145(11): 5006–5012. doi: 10.1210/en.2003-1559
|
[93] |
Duez H, Lamarche B, Valéro R, et al. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans[J]. Circulation, 2008, 117(18): 2369–2376. doi: 10.1161/CIRCULATIONAHA.107.739888
|
[94] |
Gangl A, Ockner RK. Intestinal metabolism of plasma free fatty acids. Intracellular compartmentation and mechanisms of control[J]. J Clin Invest, 1975, 55(4): 803–813. doi: 10.1172/JCI107991
|
[95] |
Steiner G, Poapst M, Davidson JK. Production of chylomicron-like lipoproteins from endogenous lipid by the intestine and liver of diabetic dogs[J]. Diabetes, 1975, 24(3): 263–271. doi: 10.2337/diab.24.3.263
|
[96] |
Elmaoğulları S, Tepe D, Uçaktürk SA, et al. Prevalence of dyslipidemia and associated factors in obese children and adolescents[J]. J Clin Res Pediatr Endocrinol, 2015, 7(3): 228–234. doi: 10.4274/jcrpe.1867
|
[97] |
Juhola J, Magnussen CG, Viikari JSA, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study[J]. J Pediatr, 2011, 159(4): 584–590. doi: 10.1016/j.jpeds.2011.03.021
|
[98] |
Adams C, Burke V, Beilin LJ. Cholesterol tracking from childhood to adult mid-life in children from the Busselton study[J]. Acta Paediatr, 2005, 94(3): 275–280.
|
[99] |
Lee JH, Kim HC, Kang DR, et al. The 23-year tracking of blood lipids from adolescence to adulthood in Korea: the Kangwha study[J]. Lipids Health Dis, 2017, 16(1): 221. doi: 10.1186/s12944-017-0615-2
|
[100] |
Berenson GS, Srinivasan SR, Bao WH, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults[J]. N Engl J Med, 1998, 338(23): 1650–1656. doi: 10.1056/NEJM199806043382302
|
[101] |
Strong JP, Malcom GT, McMahan CA, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study[J]. JAMA, 1999, 281(8): 727–735. doi: 10.1001/jama.281.8.727
|
[102] |
Wunsch R, de Sousa G, Reinehr T. Intima-media thickness in obesity: relation to hypertension and dyslipidaemia[J]. Arch Dis Child, 2005, 90(10): 1097.
|
[103] |
Fang J, Zhang JP, Luo CX, et al. Carotid Intima-media thickness in childhood and adolescent obesity relations to abdominal obesity, high triglyceride level and insulin resistance[J]. Int J Med Sci, 2010, 7(5): 278–283.
|
[104] |
Ayer JG, Harmer JA, Nakhla S, et al. HDL-cholesterol, blood pressure, and asymmetric dimethylarginine are significantly associated with arterial wall thickness in children[J]. Arterioscler Thromb Vasc Biol, 2009, 29(6): 943–949. doi: 10.1161/ATVBAHA.109.184184
|
[105] |
Otvos JD, Mora S, Shalaurova I, et al. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number[J]. J Clin Lipidol, 2011, 5(2): 105–113. doi: 10.1016/j.jacl.2011.02.001
|
[106] |
Mora S, Szklo M, Otvos JD, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA)[J]. Atherosclerosis, 2007, 192(1): 211–217. doi: 10.1016/j.atherosclerosis.2006.05.007
|
[107] |
Cromwell WC, Otvos JD, Keyes MJ, et al. LDL particle number and risk of future cardiovascular disease in the framingham offspring study—implications for LDL management[J]. J Clin Lipidol, 2007, 1(6): 583–592. doi: 10.1016/j.jacl.2007.10.001
|
[108] |
Mietus-Snyder M, Drews KL, Otvos JD, et al. Low-density lipoprotein cholesterol versus particle number in middle school children[J]. J Pediatr, 2013, 163(2): 355–362.e2. doi: 10.1016/j.jpeds.2013.01.012
|
[109] |
Redgrave TG, Roberts DCK, West CE. Separation of plasma lipoproteins by density-gradient ultracentrifugation[J]. Anal Biochem, 1975, 65(1-2): 42–49. doi: 10.1016/0003-2697(75)90488-1
|
[110] |
Packard CJ. LDL subfractions and atherogenicity: an hypothesis from the University of Glasgow[J]. Curr Med Res Opin, 1996, 13(7): 379–390. doi: 10.1185/03007999609111557
|
[111] |
Freedman DS, Bowman BA, Otvos JD, et al. Levels and correlates of LDL and VLDL particle sizes among children: the Bogalusa heart study[J]. Atherosclerosis, 2000, 152(2): 441–449. doi: 10.1016/S0021-9150(99)00495-5
|
[112] |
Otvos JD, Jeyarajah EJ, Bennett DW, et al. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement[J]. Clin Chem, 1992, 38(9): 1632–1638. doi: 10.1093/clinchem/38.9.1632
|
[113] |
Freedman DS, Bowman BA, Otvos JD, et al. Differences in the relation of obesity to serum triacylglycerol and VLDL subclass concentrations between black and white children: the Bogalusa Heart Study[J]. Am J Clin Nutr, 2002, 75(5): 827–833. doi: 10.1093/ajcn/75.5.827
|
[114] |
Magge SN, Prasad D, Koren D, et al. Prediabetic obese adolescents have a more atherogenic lipoprotein profile compared with normoglycemic obese peers[J]. J Pediatr, 2012, 161(5): 881–886. doi: 10.1016/j.jpeds.2012.04.006
|
[115] |
Burns SF, Lee S, Arslanian SA. In vivo insulin sensitivity and lipoprotein particle size and concentration in black and white children[J]. Diabetes Care, 2009, 32(11): 2087–2093. doi: 10.2337/dc09-0380
|
[116] |
Freedman DS, Bowman BA, Srinivasan SR, et al. Distribution and correlates of high-density lipoprotein subclasses among children and adolescents[J]. Metabolism, 2001, 50(3): 370–376. doi: 10.1053/meta.2001.21027
|
[117] |
D’Adamo E, Northrup V, Weiss R, et al. Ethnic differences in lipoprotein subclasses in obese adolescents: importance of liver and intraabdominal fat accretion[J]. Am J Clin Nutr, 2010, 92(3): 500–508. doi: 10.3945/ajcn.2010.29270
|
[118] |
Jago R, Drews KL, Otvos JD, et al. Effect of relative weight group change on nuclear magnetic resonance spectroscopy derived lipoprotein particle size and concentrations among adolescents[J]. J Pediatr, 2014, 164(5): 1091–1098.e3. doi: 10.1016/j.jpeds.2013.12.029
|
[119] |
Magge SN, Stettler N, Koren D, et al. Adiponectin is associated with favorable lipoprotein profile, independent of BMI and insulin resistance, in adolescents[J]. J Clin Endocrinol Metab, 2011, 96(5): 1549–1554. doi: 10.1210/jc.2010-2364
|
[120] |
Urbina EM, McCoy CE, Gao ZQ, et al. Lipoprotein particle number and size predict vascular structure and function better than traditional lipids in adolescents and young adults[J]. J Clin Lipidol, 2017, 11(4): 1023–1031. doi: 10.1016/j.jacl.2017.05.011
|
[121] |
Shah AS, Davidson WS, Gao ZQ, et al. Superiority of lipoprotein particle number to detect associations with arterial thickness and stiffness in obese youth with and without prediabetes[J]. J Clin Lipidol, 2016, 10(3): 610–618. doi: 10.1016/j.jacl.2016.01.007
|
[122] |
Garcés MF, Guarin Y, Carrero Y, et al. Fat intolerance in apparently healthy individuals with normal fasting lipoproteins is associated with markers of cardiovascular risk[J]. J Appl Lab Med, 2016, 1(3): 250–259. doi: 10.1373/jalm.2016.021204
|
[123] |
American Diabetes Association. 2. Classification and diagnosis of diabetes[J]. Diabetes Care, 2015, 38(S1): S8–S16.
|
[124] |
Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, Goldenberg R, Punthakee Z. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome[J]. Can J Diabetes, 2013, 37(S1): S8–S11.
|
[125] |
Lairon D, Lopez-Miranda J, Williams C. Methodology for studying postprandial lipid metabolism[J]. Eur J Clin Nutr, 2007, 61(10): 1145–1161. doi: 10.1038/sj.ejcn.1602749
|
[126] |
Mihas C, Kolovou GD, Mikhailidis DP, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis[J]. Curr Vasc Pharmacol, 2011, 9(3): 271–280. doi: 10.2174/157016111795495530
|
[127] |
Kolovou GD, Mikhailidis DP, Kovar J, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement[J]. Curr Vasc Pharmacol, 2011, 9(3): 258–270. doi: 10.2174/157016111795495549
|
[128] |
Ginsberg HN, Jones J, Blaner WS, et al. Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women[J]. Arterioscler Thromb Vasc Biol, 1995, 15(11): 1829–1838. doi: 10.1161/01.ATV.15.11.1829
|
[129] |
Groot PH, van Stiphout WA, Krauss XH, et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease[J]. Arterioscler Thromb Vasc Biol, 1991, 11(3): 653–662. doi: 10.1161/01.ATV.11.3.653
|
[130] |
Simpson HS, Williamson CM, Olivecrona T, et al. Postprandial lipemia, fenofibrate and coronary artery disease[J]. Atherosclerosis, 1990, 85(2-3): 193–202. doi: 10.1016/0021-9150(90)90111-U
|
[131] |
Simons LA, Dwyer T, Simons J, et al. Chylomicrons and chylomicron remnants in coronary artery disease: a case-control study[J]. Atherosclerosis, 1987, 65(1-2): 181–189. doi: 10.1016/0021-9150(87)90020-7
|
[132] |
Sharrett AR, Chambless LE, Heiss G, et al. Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. The Atherosclerosis Risk in Communities (ARIC) Study[J]. Arterioscler Thromb Vasc Biol, 1995, 15(12): 2122–2129. doi: 10.1161/01.ATV.15.12.2122
|
[133] |
Teno S, Uto Y, Nagashima H, et al. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes[J]. Diabetes Care, 2000, 23(9): 1401–1406. doi: 10.2337/diacare.23.9.1401
|
[134] |
Carstensen M, Thomsen C, Gotzsche O, et al. Differential postprandial lipoprotein responses in type 2 diabetic men with and without clinical evidence of a former myocardial infarction[J]. Rev Diabet Stud, 2004, 1(4): 175–184. doi: 10.1900/RDS.2004.1.175
|
[135] |
Syvänne M, Hilden H, Taskinen MR. Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease[J]. J Lipid Res, 1994, 35(1): 15–26.
|
[136] |
Reyes-Soffer G, Holleran S, Karmally W, et al. Measures of postprandial lipoproteins are not associated with coronary artery disease in patients with type 2 diabetes mellitus[J]. J Lipid Res, 2009, 50(9): 1901–1909. doi: 10.1194/jlr.M900092-JLR200
|
[137] |
Tiret L, Gerdes C, Murphy MJ, et al. Postprandial response to a fat tolerance test in young adults with a paternal history of premature coronary heart disease—the EARS Ⅱ study[J]. Eur J Clin Invest, 2000, 30(7): 578–585. doi: 10.1046/j.1365-2362.2000.00674.x
|
[138] |
Warnick GR, Nakajima K. Fasting versus nonfasting triglycerides: implications for laboratory measurements[J]. Clin Chem, 2008, 54(1): 14–16. doi: 10.1373/clinchem.2007.098863
|
[139] |
Weiss EP, Fields DA, Mittendorfer B, et al. Reproducibility of postprandial lipemia tests and validity of an abbreviated 4-hour test[J]. Metabolism, 2008, 57(10): 1479–1485. doi: 10.1016/j.metabol.2008.05.020
|
[140] |
Sahade V, França S, Adan LF. The influence of weight excess on the postprandial lipemia in adolescents[J]. Lipids Health Dis, 2013, 12: 17. doi: 10.1186/1476-511X-12-17
|
[141] |
Moreno LA, Quintela I, Fleta J, et al. Postprandial triglyceridemia in obese and non-obese adolescents. Importance of body composition and fat distribution[J]. J Pediatr Endocrinol Metab, 2001, 14(2): 193–202.
|
[142] |
Umpaichitra V, Banerji MA, Castells S. Postprandial hyperlipidemia after a fat loading test in minority adolescents with type 2 diabetes mellitus and obesity[J]. J Pediatr Endocrinol Metab, 2004, 17(6): 853–864.
|
[143] |
Vine DF, Wang Y, Jetha MM, et al. Impaired apob-lipoprotein and triglyceride metabolism in obese adolescents with polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2017, 102(3): 970–982.
|
[144] |
Couch SC, Isasi CR, Karmally W, et al. Predictors of postprandial triacylglycerol response in children: the Columbia University Biomarkers Study[J]. Am J Clin Nutr, 2000, 72(5): 1119–1127. doi: 10.1093/ajcn/72.5.1119
|
[145] |
Schauren BC, Portal VL, Beltrami FG, et al. Postprandial metabolism and inflammatory markers in overweight adolescents[J]. J Dev Orig Health Dis, 2014, 5(4): 299–306. doi: 10.1017/S2040174414000269
|
[1] | Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080 |
[2] | Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071 |
[3] | Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144 |
[4] | Jinshan Tang, Ziqiang Zhu, Tao Sui, Dechao Kong, Xiaojian Cao. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies[J]. The Journal of Biomedical Research, 2014, 28(3): 228-239. DOI: 10.7555/JBR.28.20130159 |
[5] | Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004 |
[6] | Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1 |
[7] | Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0 |
[8] | Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1 |
[9] | Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8 |
[10] | Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241. |
1. | Hou W, Guan F, Chen W, et al. Breastfeeding, genetic susceptibility, and the risk of asthma and allergic diseases in children and adolescents: a retrospective national population-based cohort study. BMC Public Health, 2024, 24(1): 3056. DOI:10.1186/s12889-024-20501-0 |
2. | Nandi S, Varotariya K, Luhana S, et al. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics, 2024, 24(6): 203. DOI:10.1007/s10142-024-01477-x |
3. | Sung HL, Lin WY. Causal effects of cardiovascular health on five epigenetic clocks. Clin Epigenetics, 2024, 16(1): 134. DOI:10.1186/s13148-024-01752-5 |
4. | Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254 |
5. | Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602 |
6. | Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6 |
7. | Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207 |
8. | Han J, Zhang L, Yan R, et al. CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer. Genes (Basel), 2023, 14(3): 586. DOI:10.3390/genes14030586 |
9. | Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081 |
10. | Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8 |
11. | Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424. DOI:10.1186/s12967-022-03637-8 |
12. | Shao Z, Wang T, Qiao J, et al. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies. BMC Bioinformatics, 2022, 23(1): 359. DOI:10.1186/s12859-022-04897-3 |
13. | Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388. DOI:10.1111/jfd.13668 |
14. | Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2 |
15. | Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004. DOI:10.1093/bioadv/vbab004 |
16. | Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604 |
17. | Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314. DOI:10.1186/s12916-021-02186-z |
18. | Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080. DOI:10.3390/cells10113080 |
19. | Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418. DOI:10.1186/s12967-021-03090-z |
20. | Gao Y, Zhang J, Zhao H, et al. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet, 2021, 12: 651332. DOI:10.3389/fgene.2021.651332 |
21. | Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624. DOI:10.1093/advances/nmab045 |
22. | Muneeb M, Henschel A. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods. BMC Bioinformatics, 2021, 22(1): 198. DOI:10.1186/s12859-021-04077-9 |
23. | O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367. DOI:10.1007/978-1-0716-1138-8_19 |
24. | Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Comput Struct Biotechnol J, 2021, 19: 1579-1594. DOI:10.1016/j.csbj.2021.03.008 |
25. | Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545. DOI:10.3389/fgene.2021.656545 |
26. | McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z |
27. | Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6. DOI:10.1186/s13073-020-00820-8 |
28. | Ramanan VK, Wang X, Przybelski SA, et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun, 2020, 2(2): fcaa159. DOI:10.1093/braincomms/fcaa159 |
29. | Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461. DOI:10.3389/fgene.2020.592461 |
30. | Xiao L, Yuan Z, Jin S, et al. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet, 2020, 11: 587243. DOI:10.3389/fgene.2020.587243 |
31. | Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228. DOI:10.3390/nu12082228 |
32. | Kuo TT, Jiang X, Tang H, et al. iDASH secure genome analysis competition 2018: blockchain genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics, 2020, 13(Suppl 7): 98. DOI:10.1186/s12920-020-0715-0 |
33. | Padilla-Martínez F, Collin F, Kwasniewski M, et al. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci, 2020, 21(5): 1703. DOI:10.3390/ijms21051703 |
34. | Lan T, Yang B, Zhang X, et al. Statistical Methods and Software for Substance Use and Dependence Genetic Research. Curr Genomics, 2019, 20(3): 172-183. DOI:10.2174/1389202920666190617094930 |
35. | Gaudillo J, Rodriguez JJR, Nazareno A, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One, 2019, 14(12): e0225574. DOI:10.1371/journal.pone.0225574 |
36. | Romagnoni A, Jégou S, Van Steen K, et al. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep, 2019, 9(1): 10351. DOI:10.1038/s41598-019-46649-z |
37. | Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734. DOI:10.1177/2045125318814734 |
38. | Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11. DOI:10.1093/bioinformatics/bty472 |
39. | Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x |
40. | Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8 |
41. | Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6 |
42. | Läll K, Mägi R, Morris A, et al. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med, 2017, 19(3): 322-329. DOI:10.1038/gim.2016.103 |
43. | Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232. DOI:10.1371/journal.pone.0157232 |
44. | Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895 |
45. | Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309 |