γ-catenin alleviates cardiac fibrosis through inhibiting phosphorylation of GSK-3β
-
-
Abstract
Cardiac fibrosis is a common pathological change of many cardiovascular diseases. β-catenin has been shown to promote fibrosis. However, the precise role of its homolog γ-catenin in the process of fibrosis remains largely unclear. In this study, we found that the expression of γ-catenin was significantly decreased in angiotensin Ⅱ (Ang Ⅱ)-induced cardiac fibrosis model, contrary to most reports of β-catenin. Overexpression of γ-catenin in cardiac fibroblasts (CFs) significantly inhibited the expression of α-smooth muscle actin (α-SMA), whereas knocking down the expression of γ-catenin with siRNA promoted the occurrence of cardiac fibrosis. Mechanistically, γ-catenin could bind to GSK-3β to inhibit the phosphorylation of GSK-3β, therefore preventing cardiac fibrosis. Our study shows that γ-catenin is an important protective factor in cardiac fibrosis, which provides a new potential target for the treatment of cardiac fibrosis.
-
-