3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Wang Jing, He Xuezhi, Lu Xiyi, Amin Karim Muhammad, Miao Dengshun, Zhang Erbao. A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(6): 371-381. DOI: 10.7555/JBR.33.20190015
Citation: Wang Jing, He Xuezhi, Lu Xiyi, Amin Karim Muhammad, Miao Dengshun, Zhang Erbao. A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(6): 371-381. DOI: 10.7555/JBR.33.20190015

A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells

More Information
  • Corresponding author:

    Dengshun Miao, Departments of Anatomy, Histology and Embryology, the Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu 211166, China, E-mail: dsmiao@njmu.edu.cn

    Erbao Zhang, Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166, China, E-mail: erbaozhang@njmu.edu.cn

  • Received Date: January 27, 2019
  • Revised Date: March 31, 2019
  • Accepted Date: May 05, 2019
  • Available Online: July 30, 2019
  • Gastric cancer is one of the most common malignant gastrointestinal tumors whose morbidity and mortality account for the second and third place respectively in malignant tumors in China. As an important participant in tumor biology, the abnormal expression of long non-coding RNA (lncRNAs) in cancer cells is closely related to the occurrence and development of tumors and plays the role of oncogenes or tumor suppressor genes. In this study, we identified a novel lncRNA NFIA antisense RNA 1 (NFIA-AS1) and explored its role and clinical significance in gastric cancer. Real-time quantitative PCR was performed to detect the expression of NFIA-AS1 in tumor tissues and corresponding normal tissues from 42 pairs of gastric cancer samples. The lower expression of NFIA-AS1 was significantly associated with larger tumor size, lower histological grade, and advanced TNM stage. Kaplan-meier analysis showed that NFIA-AS1 expression could be used as an independent predictor of overall survival. We also demonstrated that overexpression of NFIA-AS1 significantly inhibited the proliferation of gastric cancer cells through affecting p16 levels. In conclusion, our results suggest that the lncRNA NFIA-AS1 may play the role of tumor suppressor gene, and serve as a biomarker for prognosis or progression of gastric cancer.
  • [1]
    Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65: 87–108. doi: 10.3322/caac.21262
    [2]
    Young JA, Shimi SM, Kerr L, et al. Reduction in gastric cancer surgical mortality over 10 years: An adverse events analysis[J]. Ann Med Surg (Lond), 2014, 3: 26–30. doi: 10.1016/j.amsu.2014.03.003
    [3]
    Milne AN, Carneiro F, O'Morain C, et al. Nature meets nurture: molecular genetics of gastric cancer[J]. Hum Genet, 2009, 126: 615–28. doi: 10.1007/s00439-009-0722-x
    [4]
    Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer[J]. Biochem J, 2017, 474: 4219–4251. doi: 10.1042/BCJ20170079
    [5]
    Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016, 96: 1297–325. doi: 10.1152/physrev.00041.2015
    [6]
    Gu W, Gao T, Sun Y, et al. LncRNA expression profile reveals the potential role of lncRNAs in gastric carcinogenesis[J]. Cancer Biomark, 2015, 15: 249–58. doi: 10.3233/CBM-150460
    [7]
    Muers M. RNA: Genome-wide views of long non-coding RNAs[J]. Nat Rev Genet, 2011, 12: 742.
    [8]
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136: 629–41. doi: 10.1016/j.cell.2009.02.006
    [9]
    Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129: 1311–23. doi: 10.1016/j.cell.2007.05.022
    [10]
    Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464: 1071–6. doi: 10.1038/nature08975
    [11]
    Gutschner T, Hammerle M, Eissmann M, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells[J]. Cancer Res, 2013, 73: 1180–9. doi: 10.1158/0008-5472.CAN-12-2850
    [12]
    Yang Q, Zhang RW, Sui PC, et al. Dysregulation of non-coding RNAs in gastric cancer[J]. World J Gastroenterol, 2015, 21: 10956–81. doi: 10.3748/wjg.v21.i39.10956
    [13]
    Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146: 353–8. doi: 10.1016/j.cell.2011.07.014
    [14]
    Zhang EB, Han L, Yin DD, et al. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer[J]. Med Oncol, 2014, 31: 914. doi: 10.1007/s12032-014-0914-7
    [15]
    Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer[J]. Sci Rep, 2015, 5: 11516. doi: 10.1038/srep11516
    [16]
    Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells[J]. FEBS J, 2012, 279: 3159–65. doi: 10.1111/j.1742-4658.2012.08694.x
    [17]
    Li H, Yu B, Li J, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer[J]. Oncotarget, 2014, 5: 2318–29.
    [18]
    Yin D, He X, Zhang E, et al. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer[J]. Med Oncol, 2014, 31: 253. doi: 10.1007/s12032-014-0253-8
    [19]
    Zhang E, He X, Zhang C, et al. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1[J]. Genome Biol, 2018, 19: 154. doi: 10.1186/s13059-018-1523-0
    [20]
    Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression[J]. Cancer Res, 2011, 71: 3–7. doi: 10.1158/0008-5472.CAN-10-2483
    [21]
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer, 2011, 10: 38. doi: 10.1186/1476-4598-10-38
    [22]
    Zhu Q, Lv T, Wu Y, et al. Long non-coding RNA 00312 regulated by HOXA5 inhibits tumour proliferation and promotes apoptosis in non-small cell lung cancer[J]. J Cell Mol Med, 2017, 21: 2184–2198. doi: 10.1111/jcmm.13142
    [23]
    Zhang E, Yin D, Han L, et al. E2F1-induced upregulation of long noncoding RNA LINC00668 predicts a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically silencing of CKIs[J]. Oncotarget, 2016, 7: 23212–26.
    [24]
    Liu D, Xia P, Diao D, et al. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. J Biomed Res, 2012, 26: 389–93. doi: 10.7555/JBR.26.20120029
    [25]
    Dan J, Wang J, Wang Y, et al. LncRNA-MEG3 inhibits proliferation and metastasis by regulating miRNA-21 in gastric cancer[J]. Biomed Pharmacother, 2018, 99: 931–938. doi: 10.1016/j.biopha.2018.01.164
    [26]
    Yang J, Li C, Mudd A, et al. LncRNA PVT1 predicts prognosis and regulates tumor growth in prostate cancer[J]. Biosci Biotechnol Biochem, 2017, 81: 2301–2306. doi: 10.1080/09168451.2017.1387048
    [27]
    Song P, Jiang B, Liu Z, et al. A three-lncRNA expression signature associated with the prognosis of gastric cancer patients[J]. Cancer Med, 2017, 6: 1154–1164. doi: 10.1002/cam4.1047
    [28]
    Song W, Wang K, Zou SB. UCA1 lncRNA in metastases and prognosis[J]. Panminerva Med, 2017, 59: 278–279.
    [29]
    Kotake Y, Naemura M, Murasaki C, et al. Transcriptional Regulation of the p16 Tumor Suppressor Gene[J]. Anticancer Res, 2015, 35: 4397–401.
    [30]
    Dickson MA. Molecular pathways: CDK4 inhibitors for cancer therapy[J]. Clin Cancer Res, 2014, 20: 3379–83. doi: 10.1158/1078-0432.CCR-13-1551
    [31]
    Gopalan PK, Villegas AG, Cao C, et al. CDK4/6 inhibition stabilizes disease in patients with p16-null non-small cell lung cancer and is synergistic with mTOR inhibition[J]. Oncotarget, 2018, 9: 37352–37366.
    [32]
    Mou H, Yu L, Zheng X, et al. p16 gene expression in pancreatic cancer tissue and its importance in diagnosis[J]. J Biol Regul Homeost Agents, 2017, 31: 1043–1047.
    [33]
    Sang Y, Tang J, Li S, et al. LncRNA PANDAR regulates the G1/S transition of breast cancer cells by suppressing p16(INK4A) expression[J]. Sci Rep, 2016, 6: 22366. doi: 10.1038/srep22366
    [34]
    Kong R, Zhang EB, Yin DD, et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16[J]. Mol Cancer, 2015, 14: 82. doi: 10.1186/s12943-015-0355-8
    [35]
    Xu TP, Wang YF, Xiong WL, et al. E2F1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis[J]. Cell Death Dis, 2017, 8: e2837. doi: 10.1038/cddis.2017.205
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Xu Hu, Linfei Jiang, Chenhui Tang, Yuehong Ju, Li Jiu, Yongyue Wei, Li Guo, Yang Zhao. Association of three single nucleotide polymorphisms of ESR1 with breast cancer susceptibility: a meta-analysis[J]. The Journal of Biomedical Research, 2017, 31(3): 213-225. DOI: 10.7555/JBR.31.20160087
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Peng Zou, Lin Zhao, Haitao Xu, Ping Chen, Aihua Gu, Ning Liu, Peng Zhao, Ailin Lu. Hsa-mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2012, 26(4): 253-259. DOI: 10.7555/JBR.26.20110122
    [5]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [6]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [7]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [8]Donghua Li, Jie Wu. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(6): 417-423. DOI: 10.1016/S1674-8301(10)60056-5
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.
  • Cited by

    Periodical cited type(25)

    1. Song P, Liu T, Zhang Y, et al. Traditional Chinese medicine in the treatment of breast Cancer. Mol Cancer, 2025, 24(1): 209. DOI:10.1186/s12943-025-02416-5
    2. Sumorek-Wiadro J, Kapral-Piotrowska J, Zając A, et al. Proapoptotic and antimigration properties of osthole in combination with LY294002 against human glioma cells. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(3): 3147-3161. DOI:10.1007/s00210-024-03424-w
    3. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    4. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    5. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    6. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    7. Kordulewska NK, Topa J, Rozmus D, et al. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci, 2021, 22(24): 13634. DOI:10.3390/ijms222413634
    8. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    9. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    10. Abosharaf HA, Diab T, Atlam FM, et al. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). Biotechnol Rep (Amst), 2020, 28: e00531. DOI:10.1016/j.btre.2020.e00531
    11. Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, et al. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med, 2020, 10(4): 200. DOI:10.3390/jpm10040200
    12. Kordulewska NK, Topa J, Tańska M, et al. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients, 2020, 13(1): 123. DOI:10.3390/nu13010123
    13. Ye J, Sun D, Yu Y, et al. Osthole resensitizes CD133+ hepatocellular carcinoma cells to cisplatin treatment via PTEN/AKT pathway. Aging (Albany NY), 2020, 12(14): 14406-14417. DOI:10.18632/aging.103484
    14. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    15. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    16. Yang Y, Ren F, Tian Z, et al. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol, 2018, 9: 1392. DOI:10.3389/fphar.2018.01392
    17. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    18. Zhang S, Huang Q, Cai X, et al. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol, 2018, 9: 1650. DOI:10.3389/fphys.2018.01650
    19. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    20. Zhu X, Song X, Xie K, et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int J Mol Med, 2017, 40(4): 1143-1151. DOI:10.3892/ijmm.2017.3113
    21. Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr, 2017, 11(5-6): 464-475. DOI:10.1080/19336918.2016.1259058
    22. Li H, Wang Q, Dong L, et al. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res, 2015, 34: 137. DOI:10.1186/s13046-015-0252-4
    23. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.
    24. Ying J, Xu H, Wu D, et al. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways. Int J Clin Exp Pathol, 2015, 8(10): 12837-44.
    25. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.

    Other cited types(0)

Catalog

    Corresponding author: Zhang Erbao, erbaozhang@njmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (4866) PDF downloads (114) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return