1. |
Ucgul E, Guven DC, Ucgul AN, et al. Factors Influencing Immunotherapy Outcomes in Cancer: Sarcopenia and Systemic Inflammation. Cancer Control, 2024, 31: 10732748241302248.
DOI:10.1177/10732748241302248
|
2. |
Rodriguez SMB, Tataranu LG, Kamel A, et al. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci, 2024, 25(19): 10765.
DOI:10.3390/ijms251910765
|
3. |
Okpalanwaka IF, Anazodo FI, Chike-Aliozor ZL, et al. Bridging the Gap: Immune Checkpoint Inhibitor as an Option in the Management of Advanced and Recurrent Cervical Cancer in Sub-Saharan Africa. Cureus, 2024, 16(9): e69136.
DOI:10.7759/cureus.69136
|
4. |
Gu B, Zhao Q, Ao Y. Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies. Biomolecules, 2024, 14(9): 1057.
DOI:10.3390/biom14091057
|
5. |
Mongeon B, Hébert-Doutreloux J, Surendran A, et al. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. NPJ Syst Biol Appl, 2024, 10(1): 91.
DOI:10.1038/s41540-024-00419-4
|
6. |
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech, 2024, 25(6): 168.
DOI:10.1208/s12249-024-02883-x
|
7. |
Hassandokht Mashhadi M, Taheri F, Irani S, et al. Current Understanding of PCSK9 and Its Relevance to Cancer Prognosis and Immune Therapy: A Review. Iran J Pathol, 2024, 19(1): 1-9.
DOI:10.30699/IJP.2023.1999459.3093
|
8. |
Chasov V, Davletshin D, Gilyazova E, et al. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res, 2024, 38(3): 222-232.
DOI:10.7555/JBR.37.20230093
|
9. |
Ntemou E, Delgouffe E, Goossens E. Immune Checkpoint Inhibitors and Male Fertility: Should Fertility Preservation Options Be Considered before Treatment?. Cancers (Basel), 2024, 16(6): 1176.
DOI:10.3390/cancers16061176
|
10. |
Straube J, Bukhari S, Lerrer S, et al. PD-1 signaling uncovers a pathogenic subset of T cells in inflammatory arthritis. Arthritis Res Ther, 2024, 26(1): 32.
DOI:10.1186/s13075-023-03259-5
|
11. |
Khan M, Talpur AS, Abboud Leon C. A Rare Case of Giant Cell Arteritis After the Administration of Checkpoint Inhibitor Therapy in a Metastatic Renal Cell Carcinoma Patient. Cureus, 2023, 15(12): e50121.
DOI:10.7759/cureus.50121
|
12. |
Yao L, Wang Q, Ma W. Navigating the Immune Maze: Pioneering Strategies for Unshackling Cancer Immunotherapy Resistance. Cancers (Basel), 2023, 15(24): 5857.
DOI:10.3390/cancers15245857
|
13. |
Postwala H, Shah Y, Parekh PS, et al. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol, 2023, 40(11): 334.
DOI:10.1007/s12032-023-02201-8
|
14. |
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer, 2023, 22(1): 106.
DOI:10.1186/s12943-023-01807-w
|
15. |
Wu Q, Xia Y, Xiong X, et al. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol, 2023, 14: 1169608.
DOI:10.3389/fphar.2023.1169608
|
16. |
Rashti A, Akbari V. Construction and Periplasmic Expression of a Bispecific Tandem scFv for Dual Targeting of Immune Checkpoints. Adv Biomed Res, 2023, 12: 42.
DOI:10.4103/abr.abr_31_22
|
17. |
Wu X, Li J, Zhang Y, et al. Identification of immune cell infiltration landscape for predicting prognosis of colorectal cancer. Gastroenterol Rep (Oxf), 2023, 11: goad014.
DOI:10.1093/gastro/goad014
|
18. |
Marei HE, Hasan A, Pozzoli G, et al. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int, 2023, 23(1): 64.
DOI:10.1186/s12935-023-02902-0
|
19. |
Kulikowska de Nałęcz A, Ciszak L, Usnarska-Zubkiewicz L, et al. Inappropriate Expression of PD-1 and CTLA-4 Checkpoints in Myeloma Patients Is More Pronounced at Diagnosis: Implications for Time to Progression and Response to Therapeutic Checkpoint Inhibitors. Int J Mol Sci, 2023, 24(6): 5730.
DOI:10.3390/ijms24065730
|
20. |
Nan H, Guo P, Fan J, et al. Comprehensive analysis of the prognosis, tumor microenvironment, and immunotherapy response of SDHs in colon adenocarcinoma. Front Immunol, 2023, 14: 1093974.
DOI:10.3389/fimmu.2023.1093974
|
21. |
Akter Z, Salamat N, Ali MY, et al. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol, 2023, 12: 1072739.
DOI:10.3389/fonc.2022.1072739
|
22. |
Basudan AM. The Role of Immune Checkpoint Inhibitors in Cancer Therapy. Clin Pract, 2022, 13(1): 22-40.
DOI:10.3390/clinpract13010003
|
23. |
Jongerius C, Vermeulen L, van Egmond M, et al. Behavioral factors to modulate immunotherapy efficacy in cancer. Front Immunol, 2022, 13: 1066359.
DOI:10.3389/fimmu.2022.1066359
|
24. |
Wu Y, Yang Z, Cheng K, et al. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B, 2022, 12(12): 4287-4308.
DOI:10.1016/j.apsb.2022.11.007
|
25. |
Metropulos AE, Munshi HG, Principe DR. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. EBioMedicine, 2022, 86: 104380.
DOI:10.1016/j.ebiom.2022.104380
|
26. |
Pokrývková B, Grega M, Klozar J, et al. PD1+CD8+ Cells Are an Independent Prognostic Marker in Patients with Head and Neck Cancer. Biomedicines, 2022, 10(11): 2794.
DOI:10.3390/biomedicines10112794
|
27. |
Cassese G, Han HS, Lee B, et al. Immunotherapy for hepatocellular carcinoma: A promising therapeutic option for advanced disease. World J Hepatol, 2022, 14(10): 1862-1874.
DOI:10.4254/wjh.v14.i10.1862
|
28. |
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol, 2022, 13: 996145.
DOI:10.3389/fimmu.2022.996145
|
29. |
González LO, Eiro N, Fraile M, et al. Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel), 2022, 14(18): 4412.
DOI:10.3390/cancers14184412
|
30. |
Shao W, Xu Y, Lin S, et al. The potential of soluble programmed death-ligand 1 (sPD-L1) as a diagnosis marker for colorectal cancer. Front Oncol, 2022, 12: 988567.
DOI:10.3389/fonc.2022.988567
|
31. |
Zhu X, Su T, Wang S, et al. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol, 2022, 12: 834934.
DOI:10.3389/fonc.2022.834934
|
32. |
Shin S, Lee J, Han J, et al. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med, 2022, 19(2): 205-219.
DOI:10.1007/s13770-021-00403-7
|
33. |
Soltani A, Kajtar B, Abdelwahab EHMM, et al. Is an Immunosuppressive Microenvironment a Characteristic of Both Intra- and Extraparenchymal Central Nervous Tumors?. Pathophysiology, 2021, 28(1): 34-49.
DOI:10.3390/pathophysiology28010004
|
34. |
Luo L, Zhong A, Wang Q, et al. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar Drugs, 2021, 20(1): 29.
DOI:10.3390/md20010029
|
35. |
Bo XW, Sun LP, Yu SY, et al. Thermal ablation and immunotherapy for hepatocellular carcinoma: Recent advances and future directions. World J Gastrointest Oncol, 2021, 13(10): 1397-1411.
DOI:10.4251/wjgo.v13.i10.1397
|
36. |
Kulikowska de Nałęcz A, Ciszak L, Usnarska-Zubkiewicz L, et al. Deregulated Expression of Immune Checkpoints on Circulating CD4 T Cells May Complicate Clinical Outcome and Response to Treatment with Checkpoint Inhibitors in Multiple Myeloma Patients. Int J Mol Sci, 2021, 22(17): 9298.
DOI:10.3390/ijms22179298
|
37. |
Qianmei Y, Zehong S, Guang W, et al. Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy. Immunol Res, 2021, 69(5): 398-414.
DOI:10.1007/s12026-021-09211-6
|
38. |
Mokhtari RB, Sambi M, Qorri B, et al. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel), 2021, 13(14): 3596.
DOI:10.3390/cancers13143596
|
39. |
Ng L, Foo DC, Wong CK, et al. Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study. Cancers (Basel), 2021, 13(14): 3588.
DOI:10.3390/cancers13143588
|
40. |
Russell BL, Sooklal SA, Malindisa ST, et al. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front Oncol, 2021, 11: 641428.
DOI:10.3389/fonc.2021.641428
|
41. |
Hung HC, Lee JC, Wang YC, et al. Response Prediction in Immune Checkpoint Inhibitor Immunotherapy for Advanced Hepatocellular Carcinoma. Cancers (Basel), 2021, 13(7): 1607.
DOI:10.3390/cancers13071607
|
42. |
de Jong FC, Rutten VC, Zuiverloon TCM, et al. Improving Anti-PD-1/PD-L1 Therapy for Localized Bladder Cancer. Int J Mol Sci, 2021, 22(6): 2800.
DOI:10.3390/ijms22062800
|
43. |
Makuku R, Khalili N, Razi S, et al. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J Immunol Res, 2021, 2021: 6661406.
DOI:10.1155/2021/6661406
|
44. |
Guo J, Tang Q. Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma. Cancer Gene Ther, 2021, 28(10-11): 1075-1087.
DOI:10.1038/s41417-020-00259-4
|
45. |
Chew GM, Padua AJP, Chow DC, et al. Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. AIDS Res Hum Retroviruses, 2021, 37(1): 24-33.
DOI:10.1089/AID.2020.0172
|
46. |
Angelopoulou F, Bogdanos D, Dimitroulas T, et al. Immune checkpoint inhibitor-induced musculoskeletal manifestations. Rheumatol Int, 2021, 41(1): 33-42.
DOI:10.1007/s00296-020-04665-7
|
47. |
Ali AS, Langer SW, Federspiel B, et al. PD-L1 expression in gastroenteropancreatic neuroendocrine neoplasms grade 3. PLoS One, 2020, 15(12): e0243900.
DOI:10.1371/journal.pone.0243900
|
48. |
Sabbatino F, Liguori L, Polcaro G, et al. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci, 2020, 21(19): 7295.
DOI:10.3390/ijms21197295
|
49. |
Kole C, Charalampakis N, Tsakatikas S, et al. Immunotherapy for Hepatocellular Carcinoma: A 2021 Update. Cancers (Basel), 2020, 12(10): 2859.
DOI:10.3390/cancers12102859
|
50. |
Kothari A, Singh V, Nath UK, et al. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat?. Biology (Basel), 2020, 9(9): 243.
DOI:10.3390/biology9090243
|
51. |
Qu J, Wang L, Jiang M, et al. A Review About Pembrolizumab in First-Line Treatment of Advanced NSCLC: Focus on KEYNOTE Studies. Cancer Manag Res, 2020, 12: 6493-6509.
DOI:10.2147/CMAR.S257188
|
52. |
Yu X, Wu Y, Zhang J, et al. Pre-evaluation of humoral immune response of Bactrian camels by the quantification of Th2 cytokines using real-time PCR. J Biomed Res, 2020, 34(5): 387-394.
DOI:10.7555/JBR.34.20190035
|
53. |
Koh J, Kim Y, Lee KY, et al. MDSC subtypes and CD39 expression on CD8+ T cells predict the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC. Eur J Immunol, 2020, 50(11): 1810-1819.
DOI:10.1002/eji.202048534
|
54. |
Golay J, Andrea AE. Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies. Antibodies (Basel), 2020, 9(2): 17.
DOI:10.3390/antib9020017
|
55. |
Chatzopoulos K, Collins AR, Sotiriou S, et al. Increased ERBB2 Gene Copy Numbers Reveal a Subset of Salivary Duct Carcinomas with High Densities of Tumor Infiltrating Lymphocytes and PD-L1 Expression. Head Neck Pathol, 2020, 14(4): 951-965.
DOI:10.1007/s12105-020-01163-x
|
56. |
Sanders S, Debinski W. Challenges to Successful Implementation of the Immune Checkpoint Inhibitors for Treatment of Glioblastoma. Int J Mol Sci, 2020, 21(8): 2759.
DOI:10.3390/ijms21082759
|
57. |
Chen F, Li Y, Qin N, et al. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer. J Biomed Res, 2020, 34(2): 129-138.
DOI:10.7555/JBR.34.20190111
|
58. |
Yang F, Shi K, Jia YP, et al. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin, 2020, 41(7): 911-927.
DOI:10.1038/s41401-020-0372-z
|
59. |
Titmarsh HF, O'Connor R, Dhaliwal K, et al. The Emerging Role of the c-MET-HGF Axis in Non-small Cell Lung Cancer Tumor Immunology and Immunotherapy. Front Oncol, 2020, 10: 54.
DOI:10.3389/fonc.2020.00054
|
60. |
Spodzieja M, Kuncewicz K, Sieradzan A, et al. Disulfide-Linked Peptides for Blocking BTLA/HVEM Binding. Int J Mol Sci, 2020, 21(2): 636.
DOI:10.3390/ijms21020636
|
61. |
Cardenas JJ, Robles-Oteiza C, Politi K. Assessment of IFNγ responsiveness in patient-derived xenografts. Methods Enzymol, 2020, 631: 415-427.
DOI:10.1016/bs.mie.2019.10.027
|
62. |
AbouAitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted Nano-Drug Delivery of Colchicine against Colon Cancer Cells by Means of Mesoporous Silica Nanoparticles. Cancers (Basel), 2020, 12(1): 144.
DOI:10.3390/cancers12010144
|
63. |
Chung M, Jaffer M, Verma N, et al. Immune checkpoint inhibitor induced anti-glutamic acid decarboxylase 65 (Anti-GAD 65) limbic encephalitis responsive to intravenous immunoglobulin and plasma exchange. J Neurol, 2020, 267(4): 1023-1025.
DOI:10.1007/s00415-019-09666-6
|
64. |
Lazarus G, Audrey J, Iskandar AWB. Efficacy and safety profiles of programmed cell death-1/programmed cell death ligand-1 inhibitors in the treatment of triple-negative breast cancer: A comprehensive systematic review. Oncol Rev, 2019, 13(2): 425.
DOI:10.4081/oncol.2019.425
|
65. |
Sanghera C, Sanghera R. Immunotherapy - Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus, 2019, 11(10): e5938.
DOI:10.7759/cureus.5938
|
66. |
Saeed M, Gao J, Shi Y, et al. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9(26): 7981-8000.
DOI:10.7150/thno.37568
|
67. |
Vaishampayan U, Schöffski P, Ravaud A, et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: phase Ib results from the JAVELIN Solid Tumor trial. J Immunother Cancer, 2019, 7(1): 275.
DOI:10.1186/s40425-019-0746-2
|
68. |
Fang T, Maberley DA, Etminan M. Ocular adverse events with immune checkpoint inhibitors. J Curr Ophthalmol, 2019, 31(3): 319-322.
DOI:10.1016/j.joco.2019.05.002
|
69. |
Ofori S, Awuah SG. Small-Molecule Poly(ADP-ribose) Polymerase and PD-L1 Inhibitor Conjugates as Dual-Action Anticancer Agents. ACS Omega, 2019, 4(7): 12584-12597.
DOI:10.1021/acsomega.9b01106
|
70. |
Eiro N, Gonzalez LO, Fraile M, et al. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel), 2019, 11(5): 664.
DOI:10.3390/cancers11050664
|
71. |
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov, 2019, 18(3): 175-196.
DOI:10.1038/s41573-018-0006-z
|
72. |
Shirley M. Avelumab: A Review in Metastatic Merkel Cell Carcinoma. Target Oncol, 2018, 13(3): 409-416.
DOI:10.1007/s11523-018-0571-4
|
73. |
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol, 2018, 15(5): 458-469.
DOI:10.1038/s41423-018-0004-4
|
74. |
Huang G, Sun X, Liu D, et al. The efficacy and safety of anti-PD-1/PD-L1 antibody therapy versus docetaxel for pretreated advanced NSCLC: a meta-analysis. Oncotarget, 2017, 9(3): 4239-4248.
DOI:10.18632/oncotarget.23279
|