4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Eika S. Webb, Peng Liu, Renato Baleeiro, Nicholas R. Lemoine, Ming Yuan, Yaohe Wang. Immune checkpoint inhibitors in cancer therapy[J]. The Journal of Biomedical Research, 2018, 32(5): 317-326. DOI: 10.7555/JBR.31.20160168
Citation: Eika S. Webb, Peng Liu, Renato Baleeiro, Nicholas R. Lemoine, Ming Yuan, Yaohe Wang. Immune checkpoint inhibitors in cancer therapy[J]. The Journal of Biomedical Research, 2018, 32(5): 317-326. DOI: 10.7555/JBR.31.20160168

Immune checkpoint inhibitors in cancer therapy

Funds: 

This work was supported by The MRC DPFS grant (MR/M015696/1) and Ministry of Sciences and Technology of China (2013DFG32080).

More Information
  • Received Date: December 15, 2016
  • In recent years immune checkpoint inhibitors have garnered attention as being one of the most promising types of immunotherapy on the horizon. There has been particular focus on the immune checkpoint molecules, cytotoxic Tlymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) which have been shown to have potent immunomodulatory effects through their function as negative regulators of T cell activation. CTLA-4, through engagement with its ligands B7-1 (CD80) and B7-2 (CD86), plays a pivotal role in attenuating the activation of na?ve and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via its interaction with PD-L1 and PD-L2. The discovery of these negative regulators of the immune response was crucial in the development of checkpoint inhibitors. This shifted the focus from developing therapies that targeted activation of the host immune system against cancer to checkpoint inhibitors, which aimed to mediate tumor cell destruction through the removal of coinhibitory signals blocking anti tumor T cell responses.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Chen Li, Kerui Wang, Xingfeng Mao, Xiuxiu Liu, Yingmei Lu. Upregulated inwardly rectifying K+ current-mediated hypoactivity of parvalbumin interneuron underlies autism-like deficits in Bod1-deficient mice[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240394
    [3]Yi Haowei, Talmon Geoff, Wang Jing. Glutamate in cancers: from metabolism to signaling[J]. The Journal of Biomedical Research, 2020, 34(4): 260-270. DOI: 10.7555/JBR.34.20190037
    [4]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [5]Komal Raina, Sushil Kumar, Deepanshi Dhar, Rajesh Agarwal. Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy[J]. The Journal of Biomedical Research, 2016, 30(6): 452-465. DOI: 10.7555/JBR.30.20150111
    [6]Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107
    [7]Jiang-Jiang Qin, Sushanta Sarkar, Sukesh Voruganti, Rajesh Agarwal, Wei Wang, Ruiwen Zhang. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy[J]. The Journal of Biomedical Research, 2016, 30(4): 322-333. DOI: 10.7555/JBR.30.20160018
    [8]Chung S Yang, Qing Feng. Chemo/Dietary prevention of cancer: perspectives in China[J]. The Journal of Biomedical Research, 2014, 28(6): 447-455. DOI: 10.7555/JBR.28.20140079
    [9]Xiaojun Chen, Jie Jiang, Hongbing Shen, Zhibin Hu. Genetic susceptibility of cervical cancer[J]. The Journal of Biomedical Research, 2011, 25(3): 155-164. DOI: 10.1016/S1674-8301(11)60020-1
    [10]Li Liu, Qi Chen, Rensheng Lai, Xiaobin Wu, Xiaoyu Wu, Fukun Liu, Guohua Xu, Yong Ji. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer[J]. The Journal of Biomedical Research, 2010, 24(3): 187-197.
  • Cited by

    Periodical cited type(74)

    1. Ucgul E, Guven DC, Ucgul AN, et al. Factors Influencing Immunotherapy Outcomes in Cancer: Sarcopenia and Systemic Inflammation. Cancer Control, 2024, 31: 10732748241302248. DOI:10.1177/10732748241302248
    2. Rodriguez SMB, Tataranu LG, Kamel A, et al. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci, 2024, 25(19): 10765. DOI:10.3390/ijms251910765
    3. Okpalanwaka IF, Anazodo FI, Chike-Aliozor ZL, et al. Bridging the Gap: Immune Checkpoint Inhibitor as an Option in the Management of Advanced and Recurrent Cervical Cancer in Sub-Saharan Africa. Cureus, 2024, 16(9): e69136. DOI:10.7759/cureus.69136
    4. Gu B, Zhao Q, Ao Y. Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies. Biomolecules, 2024, 14(9): 1057. DOI:10.3390/biom14091057
    5. Mongeon B, Hébert-Doutreloux J, Surendran A, et al. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. NPJ Syst Biol Appl, 2024, 10(1): 91. DOI:10.1038/s41540-024-00419-4
    6. Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech, 2024, 25(6): 168. DOI:10.1208/s12249-024-02883-x
    7. Hassandokht Mashhadi M, Taheri F, Irani S, et al. Current Understanding of PCSK9 and Its Relevance to Cancer Prognosis and Immune Therapy: A Review. Iran J Pathol, 2024, 19(1): 1-9. DOI:10.30699/IJP.2023.1999459.3093
    8. Chasov V, Davletshin D, Gilyazova E, et al. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res, 2024, 38(3): 222-232. DOI:10.7555/JBR.37.20230093
    9. Ntemou E, Delgouffe E, Goossens E. Immune Checkpoint Inhibitors and Male Fertility: Should Fertility Preservation Options Be Considered before Treatment?. Cancers (Basel), 2024, 16(6): 1176. DOI:10.3390/cancers16061176
    10. Straube J, Bukhari S, Lerrer S, et al. PD-1 signaling uncovers a pathogenic subset of T cells in inflammatory arthritis. Arthritis Res Ther, 2024, 26(1): 32. DOI:10.1186/s13075-023-03259-5
    11. Khan M, Talpur AS, Abboud Leon C. A Rare Case of Giant Cell Arteritis After the Administration of Checkpoint Inhibitor Therapy in a Metastatic Renal Cell Carcinoma Patient. Cureus, 2023, 15(12): e50121. DOI:10.7759/cureus.50121
    12. Yao L, Wang Q, Ma W. Navigating the Immune Maze: Pioneering Strategies for Unshackling Cancer Immunotherapy Resistance. Cancers (Basel), 2023, 15(24): 5857. DOI:10.3390/cancers15245857
    13. Postwala H, Shah Y, Parekh PS, et al. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol, 2023, 40(11): 334. DOI:10.1007/s12032-023-02201-8
    14. Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer, 2023, 22(1): 106. DOI:10.1186/s12943-023-01807-w
    15. Wu Q, Xia Y, Xiong X, et al. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol, 2023, 14: 1169608. DOI:10.3389/fphar.2023.1169608
    16. Rashti A, Akbari V. Construction and Periplasmic Expression of a Bispecific Tandem scFv for Dual Targeting of Immune Checkpoints. Adv Biomed Res, 2023, 12: 42. DOI:10.4103/abr.abr_31_22
    17. Wu X, Li J, Zhang Y, et al. Identification of immune cell infiltration landscape for predicting prognosis of colorectal cancer. Gastroenterol Rep (Oxf), 2023, 11: goad014. DOI:10.1093/gastro/goad014
    18. Marei HE, Hasan A, Pozzoli G, et al. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int, 2023, 23(1): 64. DOI:10.1186/s12935-023-02902-0
    19. Kulikowska de Nałęcz A, Ciszak L, Usnarska-Zubkiewicz L, et al. Inappropriate Expression of PD-1 and CTLA-4 Checkpoints in Myeloma Patients Is More Pronounced at Diagnosis: Implications for Time to Progression and Response to Therapeutic Checkpoint Inhibitors. Int J Mol Sci, 2023, 24(6): 5730. DOI:10.3390/ijms24065730
    20. Nan H, Guo P, Fan J, et al. Comprehensive analysis of the prognosis, tumor microenvironment, and immunotherapy response of SDHs in colon adenocarcinoma. Front Immunol, 2023, 14: 1093974. DOI:10.3389/fimmu.2023.1093974
    21. Akter Z, Salamat N, Ali MY, et al. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol, 2023, 12: 1072739. DOI:10.3389/fonc.2022.1072739
    22. Basudan AM. The Role of Immune Checkpoint Inhibitors in Cancer Therapy. Clin Pract, 2022, 13(1): 22-40. DOI:10.3390/clinpract13010003
    23. Jongerius C, Vermeulen L, van Egmond M, et al. Behavioral factors to modulate immunotherapy efficacy in cancer. Front Immunol, 2022, 13: 1066359. DOI:10.3389/fimmu.2022.1066359
    24. Wu Y, Yang Z, Cheng K, et al. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B, 2022, 12(12): 4287-4308. DOI:10.1016/j.apsb.2022.11.007
    25. Metropulos AE, Munshi HG, Principe DR. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. EBioMedicine, 2022, 86: 104380. DOI:10.1016/j.ebiom.2022.104380
    26. Pokrývková B, Grega M, Klozar J, et al. PD1+CD8+ Cells Are an Independent Prognostic Marker in Patients with Head and Neck Cancer. Biomedicines, 2022, 10(11): 2794. DOI:10.3390/biomedicines10112794
    27. Cassese G, Han HS, Lee B, et al. Immunotherapy for hepatocellular carcinoma: A promising therapeutic option for advanced disease. World J Hepatol, 2022, 14(10): 1862-1874. DOI:10.4254/wjh.v14.i10.1862
    28. Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol, 2022, 13: 996145. DOI:10.3389/fimmu.2022.996145
    29. González LO, Eiro N, Fraile M, et al. Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel), 2022, 14(18): 4412. DOI:10.3390/cancers14184412
    30. Shao W, Xu Y, Lin S, et al. The potential of soluble programmed death-ligand 1 (sPD-L1) as a diagnosis marker for colorectal cancer. Front Oncol, 2022, 12: 988567. DOI:10.3389/fonc.2022.988567
    31. Zhu X, Su T, Wang S, et al. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol, 2022, 12: 834934. DOI:10.3389/fonc.2022.834934
    32. Shin S, Lee J, Han J, et al. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med, 2022, 19(2): 205-219. DOI:10.1007/s13770-021-00403-7
    33. Soltani A, Kajtar B, Abdelwahab EHMM, et al. Is an Immunosuppressive Microenvironment a Characteristic of Both Intra- and Extraparenchymal Central Nervous Tumors?. Pathophysiology, 2021, 28(1): 34-49. DOI:10.3390/pathophysiology28010004
    34. Luo L, Zhong A, Wang Q, et al. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar Drugs, 2021, 20(1): 29. DOI:10.3390/md20010029
    35. Bo XW, Sun LP, Yu SY, et al. Thermal ablation and immunotherapy for hepatocellular carcinoma: Recent advances and future directions. World J Gastrointest Oncol, 2021, 13(10): 1397-1411. DOI:10.4251/wjgo.v13.i10.1397
    36. Kulikowska de Nałęcz A, Ciszak L, Usnarska-Zubkiewicz L, et al. Deregulated Expression of Immune Checkpoints on Circulating CD4 T Cells May Complicate Clinical Outcome and Response to Treatment with Checkpoint Inhibitors in Multiple Myeloma Patients. Int J Mol Sci, 2021, 22(17): 9298. DOI:10.3390/ijms22179298
    37. Qianmei Y, Zehong S, Guang W, et al. Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy. Immunol Res, 2021, 69(5): 398-414. DOI:10.1007/s12026-021-09211-6
    38. Mokhtari RB, Sambi M, Qorri B, et al. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel), 2021, 13(14): 3596. DOI:10.3390/cancers13143596
    39. Ng L, Foo DC, Wong CK, et al. Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study. Cancers (Basel), 2021, 13(14): 3588. DOI:10.3390/cancers13143588
    40. Russell BL, Sooklal SA, Malindisa ST, et al. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front Oncol, 2021, 11: 641428. DOI:10.3389/fonc.2021.641428
    41. Hung HC, Lee JC, Wang YC, et al. Response Prediction in Immune Checkpoint Inhibitor Immunotherapy for Advanced Hepatocellular Carcinoma. Cancers (Basel), 2021, 13(7): 1607. DOI:10.3390/cancers13071607
    42. de Jong FC, Rutten VC, Zuiverloon TCM, et al. Improving Anti-PD-1/PD-L1 Therapy for Localized Bladder Cancer. Int J Mol Sci, 2021, 22(6): 2800. DOI:10.3390/ijms22062800
    43. Makuku R, Khalili N, Razi S, et al. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J Immunol Res, 2021, 2021: 6661406. DOI:10.1155/2021/6661406
    44. Guo J, Tang Q. Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma. Cancer Gene Ther, 2021, 28(10-11): 1075-1087. DOI:10.1038/s41417-020-00259-4
    45. Chew GM, Padua AJP, Chow DC, et al. Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. AIDS Res Hum Retroviruses, 2021, 37(1): 24-33. DOI:10.1089/AID.2020.0172
    46. Angelopoulou F, Bogdanos D, Dimitroulas T, et al. Immune checkpoint inhibitor-induced musculoskeletal manifestations. Rheumatol Int, 2021, 41(1): 33-42. DOI:10.1007/s00296-020-04665-7
    47. Ali AS, Langer SW, Federspiel B, et al. PD-L1 expression in gastroenteropancreatic neuroendocrine neoplasms grade 3. PLoS One, 2020, 15(12): e0243900. DOI:10.1371/journal.pone.0243900
    48. Sabbatino F, Liguori L, Polcaro G, et al. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci, 2020, 21(19): 7295. DOI:10.3390/ijms21197295
    49. Kole C, Charalampakis N, Tsakatikas S, et al. Immunotherapy for Hepatocellular Carcinoma: A 2021 Update. Cancers (Basel), 2020, 12(10): 2859. DOI:10.3390/cancers12102859
    50. Kothari A, Singh V, Nath UK, et al. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat?. Biology (Basel), 2020, 9(9): 243. DOI:10.3390/biology9090243
    51. Qu J, Wang L, Jiang M, et al. A Review About Pembrolizumab in First-Line Treatment of Advanced NSCLC: Focus on KEYNOTE Studies. Cancer Manag Res, 2020, 12: 6493-6509. DOI:10.2147/CMAR.S257188
    52. Yu X, Wu Y, Zhang J, et al. Pre-evaluation of humoral immune response of Bactrian camels by the quantification of Th2 cytokines using real-time PCR. J Biomed Res, 2020, 34(5): 387-394. DOI:10.7555/JBR.34.20190035
    53. Koh J, Kim Y, Lee KY, et al. MDSC subtypes and CD39 expression on CD8+ T cells predict the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC. Eur J Immunol, 2020, 50(11): 1810-1819. DOI:10.1002/eji.202048534
    54. Golay J, Andrea AE. Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies. Antibodies (Basel), 2020, 9(2): 17. DOI:10.3390/antib9020017
    55. Chatzopoulos K, Collins AR, Sotiriou S, et al. Increased ERBB2 Gene Copy Numbers Reveal a Subset of Salivary Duct Carcinomas with High Densities of Tumor Infiltrating Lymphocytes and PD-L1 Expression. Head Neck Pathol, 2020, 14(4): 951-965. DOI:10.1007/s12105-020-01163-x
    56. Sanders S, Debinski W. Challenges to Successful Implementation of the Immune Checkpoint Inhibitors for Treatment of Glioblastoma. Int J Mol Sci, 2020, 21(8): 2759. DOI:10.3390/ijms21082759
    57. Chen F, Li Y, Qin N, et al. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer. J Biomed Res, 2020, 34(2): 129-138. DOI:10.7555/JBR.34.20190111
    58. Yang F, Shi K, Jia YP, et al. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin, 2020, 41(7): 911-927. DOI:10.1038/s41401-020-0372-z
    59. Titmarsh HF, O'Connor R, Dhaliwal K, et al. The Emerging Role of the c-MET-HGF Axis in Non-small Cell Lung Cancer Tumor Immunology and Immunotherapy. Front Oncol, 2020, 10: 54. DOI:10.3389/fonc.2020.00054
    60. Spodzieja M, Kuncewicz K, Sieradzan A, et al. Disulfide-Linked Peptides for Blocking BTLA/HVEM Binding. Int J Mol Sci, 2020, 21(2): 636. DOI:10.3390/ijms21020636
    61. Cardenas JJ, Robles-Oteiza C, Politi K. Assessment of IFNγ responsiveness in patient-derived xenografts. Methods Enzymol, 2020, 631: 415-427. DOI:10.1016/bs.mie.2019.10.027
    62. AbouAitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted Nano-Drug Delivery of Colchicine against Colon Cancer Cells by Means of Mesoporous Silica Nanoparticles. Cancers (Basel), 2020, 12(1): 144. DOI:10.3390/cancers12010144
    63. Chung M, Jaffer M, Verma N, et al. Immune checkpoint inhibitor induced anti-glutamic acid decarboxylase 65 (Anti-GAD 65) limbic encephalitis responsive to intravenous immunoglobulin and plasma exchange. J Neurol, 2020, 267(4): 1023-1025. DOI:10.1007/s00415-019-09666-6
    64. Lazarus G, Audrey J, Iskandar AWB. Efficacy and safety profiles of programmed cell death-1/programmed cell death ligand-1 inhibitors in the treatment of triple-negative breast cancer: A comprehensive systematic review. Oncol Rev, 2019, 13(2): 425. DOI:10.4081/oncol.2019.425
    65. Sanghera C, Sanghera R. Immunotherapy - Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus, 2019, 11(10): e5938. DOI:10.7759/cureus.5938
    66. Saeed M, Gao J, Shi Y, et al. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9(26): 7981-8000. DOI:10.7150/thno.37568
    67. Vaishampayan U, Schöffski P, Ravaud A, et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: phase Ib results from the JAVELIN Solid Tumor trial. J Immunother Cancer, 2019, 7(1): 275. DOI:10.1186/s40425-019-0746-2
    68. Fang T, Maberley DA, Etminan M. Ocular adverse events with immune checkpoint inhibitors. J Curr Ophthalmol, 2019, 31(3): 319-322. DOI:10.1016/j.joco.2019.05.002
    69. Ofori S, Awuah SG. Small-Molecule Poly(ADP-ribose) Polymerase and PD-L1 Inhibitor Conjugates as Dual-Action Anticancer Agents. ACS Omega, 2019, 4(7): 12584-12597. DOI:10.1021/acsomega.9b01106
    70. Eiro N, Gonzalez LO, Fraile M, et al. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel), 2019, 11(5): 664. DOI:10.3390/cancers11050664
    71. Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov, 2019, 18(3): 175-196. DOI:10.1038/s41573-018-0006-z
    72. Shirley M. Avelumab: A Review in Metastatic Merkel Cell Carcinoma. Target Oncol, 2018, 13(3): 409-416. DOI:10.1007/s11523-018-0571-4
    73. Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol, 2018, 15(5): 458-469. DOI:10.1038/s41423-018-0004-4
    74. Huang G, Sun X, Liu D, et al. The efficacy and safety of anti-PD-1/PD-L1 antibody therapy versus docetaxel for pretreated advanced NSCLC: a meta-analysis. Oncotarget, 2017, 9(3): 4239-4248. DOI:10.18632/oncotarget.23279

    Other cited types(0)

Catalog

    Article Metrics

    Article views (5700) PDF downloads (309) Cited by(74)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return