1. |
Jaber SA, Saadh MJ. Biological activity comparison between ciprofloxacin loaded to silica nanoparticles and silver nanoparticles for the inhibition of Brucella melitensis. Vet World, 2024, 17(2): 407-412.
DOI:10.14202/vetworld.2024.407-412
|
2. |
Ishii K, Akahoshi E, Adeyemi OS, et al. Goethite and Hematite Nanoparticles Show Promising Anti-Toxoplasma Properties. Pharmaceutics, 2024, 16(3): 413.
DOI:10.3390/pharmaceutics16030413
|
3. |
Wierzbicki M, Kot M, Lange A, et al. Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Nanotechnol Sci Appl, 2024, 17: 77-94.
DOI:10.2147/NSA.S447810
|
4. |
Słota D, Piętak K, Florkiewicz W, et al. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. Nanomaterials (Basel), 2023, 13(9): 1469.
DOI:10.3390/nano13091469
|
5. |
Saadh MJ. Silver nanoparticle-conjugated antibiotics inhibit in vitro growth of Brucella melitensis. Vet World, 2022, 15(7): 1749-1752.
DOI:10.14202/vetworld.2022.1749-1752
|
6. |
Alves-Barroco C, Rivas-García L, Fernandes AR, et al. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol, 2022, 13: 841124.
DOI:10.3389/fmicb.2022.841124
|
7. |
Ullah A, Yin X, Wang F, et al. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and Their Isolation, Characterization, and Bioactivities. Molecules, 2021, 26(18): 5559.
DOI:10.3390/molecules26185559
|
8. |
Metwally DM, Alajmi RA, El-Khadragy MF, et al. Silver Nanoparticles Biosynthesized With Salvia officinalis Leaf Exert Protective Effect on Hepatic Tissue Injury Induced by Plasmodium chabaudi. Front Vet Sci, 2021, 7: 620665.
DOI:10.3389/fvets.2020.620665
|
9. |
Costa IN, Ribeiro M, Silva Franco P, et al. Biogenic Silver Nanoparticles Can Control Toxoplasma gondii Infection in Both Human Trophoblast Cells and Villous Explants. Front Microbiol, 2021, 11: 623947.
DOI:10.3389/fmicb.2020.623947
|
10. |
Farghaly DS, Sadek AM. Trypanocidal activity of methanol extracts of the hemolymph of Sarcophaga argyrostoma larva against Trypanosoma evansi infected mice. Vet World, 2020, 13(8): 1599-1604.
DOI:10.14202/vetworld.2020.1599-1604
|
11. |
Adeyemi OS, Arowolo AT, Hetta HF, et al. Apoferritin and Apoferritin-Capped Metal Nanoparticles Inhibit Arginine Kinase of Trypanosoma brucei. Molecules, 2020, 25(15): 3432.
DOI:10.3390/molecules25153432
|
12. |
Marcu IC, Eberhard N, Yerly A, et al. Isolation of Human Small Extracellular Vesicles and Tracking of their Uptake by Retinal Pigment Epithelial Cells In Vitro. Int J Mol Sci, 2020, 21(11): 3799.
DOI:10.3390/ijms21113799
|
13. |
Ebadi M, Saifullah B, Buskaran K, et al. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine, 2019, 14: 6661-6678.
DOI:10.2147/IJN.S214923
|
14. |
Alajmi RA, Al-Megrin WA, Metwally D, et al. Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep, 2019, 39(5): BSR20190379.
DOI:10.1042/BSR20190379. Print 2019 May 31
|
15. |
Baganizi DR, Nyairo E, Duncan SA, et al. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. Nanomaterials (Basel), 2017, 7(7): 165.
DOI:10.3390/nano7070165
|
16. |
Das B, Tripathy S, Adhikary J, et al. Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. J Biol Inorg Chem, 2017, 22(6): 893-918.
DOI:10.1007/s00775-017-1468-x
|
17. |
Hemmaragala NM, Abrahamse H, George BP. Effect of GNP functionalisation and multiple N-methylation of β-amyloid residue (32-37) on Gram-positive bacterium. IET Nanobiotechnol, 2017, 11(4): 377-382.
DOI:10.1049/iet-nbt.2016.0083
|
18. |
Adeyemi OS, Murata Y, Sugi T, et al. Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Int J Nanomedicine, 2017, 12: 1647-1661.
DOI:10.2147/IJN.S122178
|
19. |
Bano S, Nazir S, Munir S, et al. "Smart" nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy. Int J Nanomedicine, 2016, 11: 3159-66.
DOI:10.2147/IJN.S106533
|