4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Oluyomi S. Adeyemi, Faoziyat A. Sulaiman. Evaluation of metal nanoparticles for drug delivery systems[J]. The Journal of Biomedical Research, 2015, 29(2): 145-149. DOI: 10.7555/JBR.28.20130096
Citation: Oluyomi S. Adeyemi, Faoziyat A. Sulaiman. Evaluation of metal nanoparticles for drug delivery systems[J]. The Journal of Biomedical Research, 2015, 29(2): 145-149. DOI: 10.7555/JBR.28.20130096

Evaluation of metal nanoparticles for drug delivery systems

More Information
  • Received Date: June 23, 2013
  • Revised Date: July 14, 2013
  • Diminazene aceturate is a trypanocide with unwanted toxicity and limited efficacy. It was reasoned that conjugating diminazene aceturate to functionalized nanoparticle would lower untoward toxicity while improving selectivity and therapeutic efficacy. Silver and gold nanoparticles were evaluated for their capacities to serve as carriers for diminazene aceturate. The silver and gold nanoparticles were synthesized, functionalized and coupled to diminazene aceturate following established protocols. The nanoparticle conjugates were characterized. The free diminazene aceturate and drug conjugated nanoparticles were subsequently evaluated for cytotoxicity in vitro. The characterizations by transmission electron microscopy or UV/Vis spectroscopy revealed that conjugation of diminazene aceturate to silver or gold nanoparticles was successful. Evaluation for cytotoxic actions in vitro demonstrated no significance difference between free diminazene aceturate and the conjugates. Our data suggest that surface modified metal nanoparticles could be optimized for drug delivery systems.
  • Related Articles

    [1]Adittya Arefin, Tanzila Ismail Ema, Tamnia Islam, Md. Saddam Hossen, Tariqul Islam, Salauddin Al Azad, Md. Nasir Uddin Badal, Md. Aminul Islam, Partha Biswas, Nafee Ul Alam, Enayetul Islam, Maliha Anjum, Afsana Masud, Md. Shaikh Kamran, Ahsab Rahman, Parag Kumar Paul. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach[J]. The Journal of Biomedical Research, 2021, 35(6): 459-473. DOI: 10.7555/JBR.35.20210111
    [2]Sun Meihen, Han Xu, Chang Fei, Xu Hongfei, Colgan Lesley, Liu Yongjian. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells[J]. The Journal of Biomedical Research, 2021, 35(5): 339-350. DOI: 10.7555/JBR.34.20200095
    [3]Svistunenko Dimitri A., Manole Andreea. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic?[J]. The Journal of Biomedical Research, 2020, 34(4): 281-291. DOI: 10.7555/JBR.33.20180084
    [4]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [5]Fei Chang, Na Li, Kang Yan, Yumin Huang, Hongfei Xu, Yongjian Liu. Luminal/extracellular domains of chimeric CI-M6PR-C proteins interfere with their retrograde endosome-to-TGN trafficking in the transient expression system[J]. The Journal of Biomedical Research, 2018, 32(4): 245-256. DOI: 10.7555/JBR.32.20180044
    [6]Aline D. Lima, Ning Hua, Raul C. Maranhão, James A. Hamilton. Evaluation of atherosclerotic lesions in cholesterol-fed mice during treatment with paclitaxel in lipid nanoparticles: a magnetic resonance imaging study[J]. The Journal of Biomedical Research, 2017, 31(2): 116-121. DOI: 10.7555/JBR.31.20160123
    [7]Xinli Liu. Bone site-specific delivery of siRNA[J]. The Journal of Biomedical Research, 2016, 30(4): 264-271. DOI: 10.7555/JBR.30.20150110
    [8]Amit Kumar Sharma, Rajeev Kumar Tiwari, Mulayam Singh Gaur. Three dimensional structure prediction and proton nuclear magnetic resonance analysis of toxic pesticides in human blood plasma[J]. The Journal of Biomedical Research, 2012, 26(3): 170-184. DOI: 10.7555/JBR.26.20110132
    [9]Ibrahim Mohamed Hamouda. Current perspectives of nanoparticles in medical and dental biomaterials[J]. The Journal of Biomedical Research, 2012, 26(3): 143-151. DOI: 10.7555/JBR.26.20120027
    [10]Daozhen Chen, Qiusha Tang, Wenqun Xue, Jingying Xiang, Li Zhang, Xinru Wang. The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles[J]. The Journal of Biomedical Research, 2010, 24(1): 26-32.
  • Cited by

    Periodical cited type(19)

    1. Jaber SA, Saadh MJ. Biological activity comparison between ciprofloxacin loaded to silica nanoparticles and silver nanoparticles for the inhibition of Brucella melitensis. Vet World, 2024, 17(2): 407-412. DOI:10.14202/vetworld.2024.407-412
    2. Ishii K, Akahoshi E, Adeyemi OS, et al. Goethite and Hematite Nanoparticles Show Promising Anti-Toxoplasma Properties. Pharmaceutics, 2024, 16(3): 413. DOI:10.3390/pharmaceutics16030413
    3. Wierzbicki M, Kot M, Lange A, et al. Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Nanotechnol Sci Appl, 2024, 17: 77-94. DOI:10.2147/NSA.S447810
    4. Słota D, Piętak K, Florkiewicz W, et al. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. Nanomaterials (Basel), 2023, 13(9): 1469. DOI:10.3390/nano13091469
    5. Saadh MJ. Silver nanoparticle-conjugated antibiotics inhibit in vitro growth of Brucella melitensis. Vet World, 2022, 15(7): 1749-1752. DOI:10.14202/vetworld.2022.1749-1752
    6. Alves-Barroco C, Rivas-García L, Fernandes AR, et al. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol, 2022, 13: 841124. DOI:10.3389/fmicb.2022.841124
    7. Ullah A, Yin X, Wang F, et al. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and Their Isolation, Characterization, and Bioactivities. Molecules, 2021, 26(18): 5559. DOI:10.3390/molecules26185559
    8. Metwally DM, Alajmi RA, El-Khadragy MF, et al. Silver Nanoparticles Biosynthesized With Salvia officinalis Leaf Exert Protective Effect on Hepatic Tissue Injury Induced by Plasmodium chabaudi. Front Vet Sci, 2021, 7: 620665. DOI:10.3389/fvets.2020.620665
    9. Costa IN, Ribeiro M, Silva Franco P, et al. Biogenic Silver Nanoparticles Can Control Toxoplasma gondii Infection in Both Human Trophoblast Cells and Villous Explants. Front Microbiol, 2021, 11: 623947. DOI:10.3389/fmicb.2020.623947
    10. Farghaly DS, Sadek AM. Trypanocidal activity of methanol extracts of the hemolymph of Sarcophaga argyrostoma larva against Trypanosoma evansi infected mice. Vet World, 2020, 13(8): 1599-1604. DOI:10.14202/vetworld.2020.1599-1604
    11. Adeyemi OS, Arowolo AT, Hetta HF, et al. Apoferritin and Apoferritin-Capped Metal Nanoparticles Inhibit Arginine Kinase of Trypanosoma brucei. Molecules, 2020, 25(15): 3432. DOI:10.3390/molecules25153432
    12. Marcu IC, Eberhard N, Yerly A, et al. Isolation of Human Small Extracellular Vesicles and Tracking of their Uptake by Retinal Pigment Epithelial Cells In Vitro. Int J Mol Sci, 2020, 21(11): 3799. DOI:10.3390/ijms21113799
    13. Ebadi M, Saifullah B, Buskaran K, et al. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine, 2019, 14: 6661-6678. DOI:10.2147/IJN.S214923
    14. Alajmi RA, Al-Megrin WA, Metwally D, et al. Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep, 2019, 39(5): BSR20190379. DOI:10.1042/BSR20190379. Print 2019 May 31
    15. Baganizi DR, Nyairo E, Duncan SA, et al. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. Nanomaterials (Basel), 2017, 7(7): 165. DOI:10.3390/nano7070165
    16. Das B, Tripathy S, Adhikary J, et al. Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. J Biol Inorg Chem, 2017, 22(6): 893-918. DOI:10.1007/s00775-017-1468-x
    17. Hemmaragala NM, Abrahamse H, George BP. Effect of GNP functionalisation and multiple N-methylation of β-amyloid residue (32-37) on Gram-positive bacterium. IET Nanobiotechnol, 2017, 11(4): 377-382. DOI:10.1049/iet-nbt.2016.0083
    18. Adeyemi OS, Murata Y, Sugi T, et al. Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Int J Nanomedicine, 2017, 12: 1647-1661. DOI:10.2147/IJN.S122178
    19. Bano S, Nazir S, Munir S, et al. "Smart" nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy. Int J Nanomedicine, 2016, 11: 3159-66. DOI:10.2147/IJN.S106533

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return