4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Naveen Kumar Mekala, Rama Raju Baadhe, Sreenivasa Rao Parcha, Prameela Devi Yalavarthy. Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique[J]. The Journal of Biomedical Research, 2013, 27(4): 318-325. DOI: 10.7555/JBR.27.20130001
Citation: Naveen Kumar Mekala, Rama Raju Baadhe, Sreenivasa Rao Parcha, Prameela Devi Yalavarthy. Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique[J]. The Journal of Biomedical Research, 2013, 27(4): 318-325. DOI: 10.7555/JBR.27.20130001

Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique

More Information
  • Received Date: January 03, 2013
  • Tissue engineering scaffolds require a controlled pore size and interconnected pore structures to support the host tissue growth. In the present study, three dimensional (3D) hybrid scaffolds of poly lactic acid (PLA) and poly glycolic acid (PGA) were fabricated using solvent casting/particulate leaching. In this case, partially fused NaCl particles were used as porogen (200-300μ) to improve the overall porosity ( ≥ 90%) and internal texture of scaffolds. Differential scanning calorimeter (DSC) analysis of these porous scaffolds revealed a gradual reduc-tion in glass transition temperature (Tg) (from 48°C to 42.5°C) with increase in hydrophilic PGA content. The potential applications of these scaffolds as implants were further tested for their biocompatibility and biodegrad-ability in four simulated body fluid (SBF) types in vitro. Whereas, simulated body fluid (SBF) Type1 with the op-timal amount of HCO3- ions was found to be more appropriate and sensible for testing the bioactivity of scaffolds. Among three combinations of polymer scaffolds, sample B with a ratio of 75:25 of PLA: PGA showed greater stability in body fluids (pH 7.2) with an optimum degradation rate (9% to 12% approx). X-ray diffractogram also confirmed a thin layer of hydroxyapatite deposition over sample B with all SBF types in vitro.
  • Related Articles

    [1]Liuhua Zhou, Jiateng Sun, Tongtong Yang, Sibo Wang, Tiankai Shan, Lingfeng Gu, Jiawen Chen, Tianwen Wei, Di Zhao, Chong Du, Yulin Bao, Hao Wang, Xiaohu Lu, Haoliang Sun, Meng Lv, Di Yang, Liansheng Wang. Improved methodology for efficient establishment of the myocardial ischemia-reperfusion model in pigs through the median thoracic incision[J]. The Journal of Biomedical Research, 2023, 37(4): 302-312. DOI: 10.7555/JBR.36.20220189
    [2]Desaulniers Amy T., Cederberg Rebecca A., Carreiro Elizabeth P., Gurumurthy Channabasavaiah B., White Brett R.. A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues[J]. The Journal of Biomedical Research, 2021, 35(2): 163-173. DOI: 10.7555/JBR.34.20200111
    [3]Wang Ronggen, Ruan Miaomiao, Zhang Runjie, Chen Lei, Li Xiaoxue, Fang Bin, Li Chu, Ren Xueyang, Liu Jiying, Xiong Qiang, Zhang Lining, Jin Yong, Li Lin, Li Rongfeng, Wang Ying, Yang Haiyuan, Dai Yifan. Antigenicity of tissues and organs from GGTA1/CMAH/β4GalNT2 triple gene knockout pigs[J]. The Journal of Biomedical Research, 2019, 33(4): 235-243. DOI: 10.7555/JBR.32.20180018
    [4]Young-Joo Yi, S. Kamala-Kannan, Jeong-Muk Lim, Byung-Taek Oh, Sang-Myeong Lee. Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs[J]. The Journal of Biomedical Research, 2017, 31(5): 453-461. DOI: 10.7555/JBR.31.20160115
    [5]Ze Li, Hai-Yuan Yang, Ying Wang, Man-Ling Zhang, Xiao-Rui Liu, Qiang Xiong, Li-Ning Zhang, Yong Jin, Li-Sha Mou, Yan Liu, Rong-Feng Li, Yi Rao, Yi-Fan Dai. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting[J]. The Journal of Biomedical Research, 2017, 31(5): 445-452. DOI: 10.7555/JBR.31.20170026
    [6]Arbind Kumar Choudhary, Rathinasamy Sheela Devi. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats[J]. The Journal of Biomedical Research, 2016, 30(5): 427-435. DOI: 10.7555/JBR.30.20140097
    [7]So-Hye Hong, Jae-Eon Lee, Hong Sung Kim, Young-Jin Jung, DaeYoun Hwang, Jae Ho Lee, Seung Yun Yang, Seung-Chul Kim, Seong-Keun Cho, Beum-Soo An. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes[J]. The Journal of Biomedical Research, 2016, 30(3): 203-208. DOI: 10.7555/JBR.30.2016K0012
    [8]JunLin Cheng, Ying Wang, Zhengwei Zhang, Yong Jin, QianKun Li, RongGen Want, Yan Wang, XiaoKang Li, Qiang Xiong, ManLing Zhang, RongFeng Li, YiFan Dai. Dominant-negative inhibition of glucose-dependent insulinotropic polypeptide impairs function of b cells in transgenic pigs[J]. The Journal of Biomedical Research, 2015, 29(6): 512-514. DOI: 10.7555/JBR.29.20150046
    [9]Qichun Chen, Qiang Zuo, Qianqian Hu, Yang Feng, Weiding Cui, Weimin Fan, Yuefen Zou. Morphological MRI and T2 mapping of cartilage repair tissue after mosaicplasty with tissue-engineered cartilage in a pig model[J]. The Journal of Biomedical Research, 2014, 28(4): 309-319. DOI: 10.7555/JBR.28.20120119
    [10]Zhengxian Tao, Bo Chen, Yingming Zhao, Hongwu Chen, Liansheng Wang, Yonghong Yong, Kejiang Cao, Qifeng Yu, Danian Ke, Hua Wang, Zuze Wu, Zhijian Yang. HGF percutaneous endocardial injection induces cardiomyocyte proliferation and rescues cardiac function in pigs[J]. The Journal of Biomedical Research, 2010, 24(3): 198-206.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return