4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jun Wang, Wenyi Qian, Qing Zhu, Jian Chen, Fei Huan, Rong Gao, Hang Xiao. Martentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-α-induced nitric oxide release by human umbilical vein endothelial cells[J]. The Journal of Biomedical Research, 2013, 27(5): 386-393. DOI: 10.7555/JBR.27.20120080
Citation: Jun Wang, Wenyi Qian, Qing Zhu, Jian Chen, Fei Huan, Rong Gao, Hang Xiao. Martentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-α-induced nitric oxide release by human umbilical vein endothelial cells[J]. The Journal of Biomedical Research, 2013, 27(5): 386-393. DOI: 10.7555/JBR.27.20120080

Martentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-α-induced nitric oxide release by human umbilical vein endothelial cells

  • Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch, has been demonstrated to block large-conductance Ca2+-activated K+ (BKCa) channels; however, its biological roles are still largely unknown. In the present study, we investigated the pharmacological effects of martentoxin on regulating the production of nitric oxide induced by TNF-α in human umbilical vein endothelial cells (HU?VECs). We found that, 1, 10 and 100 μmol/L martentoxin decreased nitric oxide production by HUVECs ex?posed to 10 ng/mL TNF for 6, 12 and 24 hours. We further demonstrated that martentoxin inhibited the activity of iNOS and retarded the down-regulation of eNOS mRNA induced by TNF-α. Therefore, martentoxin could be a potential therapeutic agent for vascular diseases.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return