Mutational screening of affected cardiac tissues and peripheral blood cells identified novel somatic mutations in GATA4 in patients with ventricular septal defect
-
-
Abstract
The aim of this study was to examine how somatic mutations of the GATA4 gene contributed to the genesis of ventricular septal defect (VSD). The coding and intron-exon boundary regions of GATA4 were sequenced of DNA samples from peripheral blood cells and cardiac tissues of twenty surgically treated probands with VSD. Seven novel heterozygous variants were detected in cardiac tissues from VSD patients, but they were not detected in the peripheral blood cells of VSD patients or in 500 healthy control samples. We replicated 14 single nucleotide polymorphisms (SNPs) reported in NCBI. Bioinformatics analysis was performed to analyze the possible mecha-nism by which mutations were linked to VSD. Among those variants, c. 1004C<A (p.S335X) occurred in the highly conserved domain of GATA4 and generated a termination codon, which led to the production of truncated GATA4. The seven novel heterozygous GATA4 mutations were only identified in cardiac tissues with VSD, sug-gesting that they are of somatic origin. A higher mutation rate in cardiac tissues than in peripheral blood cells im-plies that the genetic contribution to VSD may have been underestimated.
-
-