[1] |
Khoury MJ, Dorman JS. The human genome epidemiology network[J]. Am J Epidemiol, 1998, 148(1): 1–3. doi: 10.1093/aje/148.1.1 |
[2] |
Khoury MJ. Human genome epidemiology: translating advances in human genetics into population-based data for medicine and public health[J]. Genet Med, 1999, 1(3): 71–73. doi: 10.1097/00125817-199903000-00002 |
[3] |
Shen HB, Jin GF. Human genome epidemiology, progress and future[J]. J Biomed Res, 2013, 27(3): 167–169. doi: 10.7555/JBR.27.20130040 |
[4] |
Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467–484. doi: 10.1038/s41576-019-0127-1 |
[5] |
Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS discovery: biology, function, and translation[J]. Am J Hum Genet, 2017, 101(1): 5–22. doi: 10.1016/j.ajhg.2017.06.005 |
[6] |
Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019[J]. Nucleic Acids Res, 2019, 47(D1): D1005–D1012. doi: 10.1093/nar/gky1120 |
[7] |
Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores[J]. Nat Rev Genet, 2018, 19(9): 581–590. doi: 10.1038/s41576-018-0018-x |
[8] |
Dai JC, Lv J, Zhu M, et al. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations[J]. Lancet Respir Med, 2019, 7(10): 881–891. doi: 10.1016/S2213-2600(19)30144-4 |
[9] |
Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations[J]. Nat Genet, 2018, 50(9): 1219–1224. doi: 10.1038/s41588-018-0183-z |
[10] |
Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy[J]. Science, 2018, 359(6375): 582–587. doi: 10.1126/science.aao4572 |
[11] |
Young AI. Solving the missing heritability problem[J]. PLoS Genet, 2019, 15(6): e1008222. doi: 10.1371/journal.pgen.1008222 |
[12] |
Zuk O, Schaffner SF, Samocha K, et al. Searching for missing heritability: designing rare variant association studies[J]. Proc Natl Acad Sci USA, 2014, 111(4): E455–E464. doi: 10.1073/pnas.1322563111 |
[13] |
Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies[J]. Mol Cell, 2015, 58(4): 586–597. doi: 10.1016/j.molcel.2015.05.004 |
[14] |
Wang QG, Armenia J, Zhang C, et al. Unifying cancer and normal RNA sequencing data from different sources[J]. Sci Data, 2018, 5(1): 180061. doi: 10.1038/sdata.2018.61 |
[15] |
Favé MJ, Lamaze FC, Soave D, et al. Gene-by-environment interactions in urban populations modulate risk phenotypes[J]. Nat Commun, 2018, 9(1): 827. doi: 10.1038/s41467-018-03202-2 |
[16] |
Idaghdour Y, Awadalla P. Exploiting gene expression variation to capture gene-environment interactions for disease[J]. Front Genet, 2013, 3: 228. |
[17] |
Aschard H, Lutz S, Maus B, et al. Challenges and opportunities in genome-wide environmental interaction (GWEI) studies[J]. Hum Genet, 2012, 131(10): 1591–1613. doi: 10.1007/s00439-012-1192-0 |
[18] |
McAllister K, Mechanic LE, Amos C, et al. Current challenges and new opportunities for gene-environment interaction studies of complex diseases[J]. Am J Epidemiol, 2017, 186(7): 753–761. doi: 10.1093/aje/kwx227 |
[19] |
Hutter CM, Mechanic LE, Chatterjee N, et al. Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report[J]. Genet Epidemiol, 2013, 37(7): 643–657. doi: 10.1002/gepi.21756 |
[20] |
Dong J, Hu ZB, Wu C, et al. Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population[J]. Nat Genet, 2012, 44(8): 895–899. doi: 10.1038/ng.2351 |
[21] |
Hu ZB, Wu C, Shi YY, et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese[J]. Nat Genet, 2011, 43(8): 792–796. doi: 10.1038/ng.875 |
[22] |
Shao LP, Zuo XL, Yang Y, et al. The inherited variations of a p53-responsive enhancer in 13q12.12 confer lung cancer risk by attenuating TNFRSF19 expression[J]. Genome Biol, 2019, 20(1): 103. doi: 10.1186/s13059-019-1696-1 |
[23] |
Shi M, Umbach DM, Weinberg CR. Family-based gene-by-environment interaction studies: revelations and remedies[J]. Epidemiology, 2011, 22(3): 400–407. doi: 10.1097/EDE.0b013e318212fec6 |
[24] |
Lund E, Dumeaux V. Systems epidemiology in cancer[J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(11): 2954–2957. doi: 10.1158/1055-9965.EPI-08-0519 |
[25] |
Jacobs L, Thijs L, Jin Y, et al. Heart 'omics' in AGEing (HOMAGE): design, research objectives and characteristics of the common database[J]. J Biomed Res, 2014, 28(5): 349–359. |
[26] |
Haring R, Wallaschofski H. Diving through the "-omics": the case for deep phenotyping and systems epidemiology[J]. OMICS, 2012, 16(5): 231–234. doi: 10.1089/omi.2011.0108 |
[27] |
Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer[J]. Immunity, 2018, 48(4): 812–830. doi: 10.1016/j.immuni.2018.03.023 |
[28] |
Berger AC, Korkut A, Kanchi RS, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers[J]. Cancer Cell, 2018, 33(4): 690–705. doi: 10.1016/j.ccell.2018.03.014 |